Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Deep Learning-Based ECG Classification for Arterial Fibrillation Detection

    Muhammad Sohail Irshad1,2,*, Tehreem Masood1,2, Arfan Jaffar1,2, Muhammad Rashid3, Sheeraz Akram1,2,4,*, Abeer Aljohani5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4805-4824, 2024, DOI:10.32604/cmc.2024.050931

    Abstract The application of deep learning techniques in the medical field, specifically for Atrial Fibrillation (AFib) detection through Electrocardiogram (ECG) signals, has witnessed significant interest. Accurate and timely diagnosis increases the patient’s chances of recovery. However, issues like overfitting and inconsistent accuracy across datasets remain challenges. In a quest to address these challenges, a study presents two prominent deep learning architectures, ResNet-50 and DenseNet-121, to evaluate their effectiveness in AFib detection. The aim was to create a robust detection mechanism that consistently performs well. Metrics such as loss, accuracy, precision, sensitivity, and Area Under the Curve… More >

  • Open Access

    ARTICLE

    Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms

    Maie Aboghazalah1,*, Passent El-kafrawy2, Abdelmoty M. Ahmed3, Rasha Elnemr5, Belgacem Bouallegue3, Ayman El-sayed4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3855-3875, 2024, DOI:10.32604/cmc.2023.039936

    Abstract Heart monitoring improves life quality. Electrocardiograms (ECGs or EKGs) detect heart irregularities. Machine learning algorithms can create a few ECG diagnosis processing methods. The first method uses raw ECG and time-series data. The second method classifies the ECG by patient experience. The third technique translates ECG impulses into Q waves, R waves and S waves (QRS) features using richer information. Because ECG signals vary naturally between humans and activities, we will combine the three feature selection methods to improve classification accuracy and diagnosis. Classifications using all three approaches have not been examined till now. Several More >

  • Open Access

    ARTICLE

    An Attention Based Neural Architecture for Arrhythmia Detection and Classification from ECG Signals

    Nimmala Mangathayaru1,*, Padmaja Rani2, Vinjamuri Janaki3, Kalyanapu Srinivas4, B. Mathura Bai1, G. Sai Mohan1, B. Lalith Bharadwaj1

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2425-2443, 2021, DOI:10.32604/cmc.2021.016534

    Abstract Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine. Detecting arrhythmia from ECG signals is considered a standard approach and hence, automating this process would aid the diagnosis by providing fast, cost-efficient, and accurate solutions at scale. This is executed by extracting the definite properties from the individual patterns collected from Electrocardiography (ECG) signals causing arrhythmia. In this era of applied intelligence, automated detection and diagnostic solutions are widely used for their spontaneous and robust solutions. In this research, our contributions are two-fold. Firstly, the Dual-Tree Complex Wavelet… More >

  • Open Access

    ARTICLE

    ECG Classification Using Deep CNN Improved by Wavelet Transform

    Yunxiang Zhao1, Jinyong Cheng1, *, Ping Zhang1, Xueping Peng2

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1615-1628, 2020, DOI:10.32604/cmc.2020.09938

    Abstract Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds of subsignals with different frequency scales by wavelet function, and then wavelet reconstruction is carried out after segmented filtering to eliminate the influence of noise. A 24-layer convolution neural network is used to extract the hierarchical features by convolution kernels of different sizes, and finally the softmax classifier is used to More >

Displaying 1-10 on page 1 of 4. Per Page