Muhammad Sohail Irshad1,2,*, Tehreem Masood1,2, Arfan Jaffar1,2, Muhammad Rashid3, Sheeraz Akram1,2,4,*, Abeer Aljohani5
CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4805-4824, 2024, DOI:10.32604/cmc.2024.050931
Abstract The application of deep learning techniques in the medical field, specifically for Atrial Fibrillation (AFib) detection through Electrocardiogram (ECG) signals, has witnessed significant interest. Accurate and timely diagnosis increases the patient’s chances of recovery. However, issues like overfitting and inconsistent accuracy across datasets remain challenges. In a quest to address these challenges, a study presents two prominent deep learning architectures, ResNet-50 and DenseNet-121, to evaluate their effectiveness in AFib detection. The aim was to create a robust detection mechanism that consistently performs well. Metrics such as loss, accuracy, precision, sensitivity, and Area Under the Curve… More >