Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (292)
  • Open Access

    ARTICLE

    Computational Methods in Engineering: A Variety of Primal & Mixed Methods, with Global & Local Interpolations, for Well-Posed or Ill-Posed BCs

    L. Dong1, A. Alotaibi2, S.A. Mohiuddine2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.1, pp. 1-85, 2014, DOI:10.3970/cmes.2014.099.001

    Abstract In this expository article, a variety of computational methods, such as Collocation, Finite Volume, Finite Element, Boundary Element, MLPG (Meshless Local Petrov Galerkin), Trefftz methods, and Method of Fundamental Solutions, etc., which are often used in isolated ways in contemporary literature are presented in a unified way, and are illustrated to solve a 4th order ordinary differential equation (beam on an elastic foundation). Both the primal formulation, which considers the 4th order ODE with displacement as the primitive variable, as well as two types of mixed formulations (one resulting in a set of 2 second-order ODEs, and the other resulting… More >

  • Open Access

    ARTICLE

    Construction of an Edge Finite Element Space and a Contribution to the Mesh Selection in the Approximation of the Second Order Time Harmonic Maxwell System

    J. E. Sebold1, L. A. Lacerda2, J. A. M. Carrer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.2, pp. 111-137, 2014, DOI:10.3970/cmes.2014.103.111

    Abstract This work is concerned with the development of the so-called Whitney and Nédélec edge finite element method for the solution of the time-harmonic Maxwell equations. Initially, the second order time harmonic Maxwell systems, as well as their variational formulation, are presented. In the sequence, Whitney and Nédélec element spaces, whose functions present continuous tangential components along the interface are built of adjacent elements. Then, numerical experiments validate the performance of Whitney and Nédélec first order elements in a two-dimensional domain. The discrete dispersion relation for the elements shows that the numerical phase velocity can be used as an error estimator.… More >

  • Open Access

    ARTICLE

    A Systematic Review of Algorithms with Linear-time Behaviour to Generate Delaunay and Voronoi Tessellations

    S,erson L. Gonzaga de Oliveira1, Jéssica Renata Nogueira1, João Manuel R. S. Tavares2

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.1, pp. 31-57, 2014, DOI:10.3970/cmes.2014.100.031

    Abstract Triangulations and tetrahedrizations are important geometrical discretization procedures applied to several areas, such as the reconstruction of surfaces and data visualization. Delaunay and Voronoi tessellations are discretization structures of domains with desirable geometrical properties. In this work, a systematic review of algorithms with linear-time behaviour to generate 2D/3D Delaunay and/or Voronoi tessellations is presented. More >

  • Open Access

    REVIEW

    Applications of the MLPG Method in Engineering & Sciences: A Review

    J. Sladek1, P. Stanak1, Z-D. Han2, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 423-475, 2013, DOI:10.3970/cmes.2013.092.423

    Abstract A review is presented for analysis of problems in engineering & the sciences, with the use of the meshless local Petrov-Galerkin (MLPG) method. The success of the meshless methods lie in the local nature, as well as higher order continuity, of the trial function approximations, high adaptivity and a low cost to prepare input data for numerical analyses, since the creation of a finite element mesh is not required. There is a broad variety of meshless methods available today; however the focus is placed on the MLPG method, in this paper. The MLPG method is a fundamental base for the… More >

  • Open Access

    ARTICLE

    On Appropriately Matching the Bottomhole Pendulum Assembly with the Anisotropic Drill Bit, to Control the Hole-Deviation

    Deli Gao1, Zhen Dong1, Hui Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.2, pp. 111-122, 2012, DOI:10.3970/cmes.2012.089.111

    Abstract The bottom hole pendulum assembly is a type of bottom hole assembly (BHA) for controlling the hole deviation, and has been widely used in drilling engineering. Generally, the ability of the drill bit to penetrate laterally, is different from its ability to penetrate axially, so that the drill bit has an anisotropy which affects the hole-deviation-control characteristics of the BHA. The tilt angle and the side force of the drill bit are obtained by a BHA analysis based on the method of weighted residuals. Thus, the effective drilling force can be determined using the rock-bit interaction model. On this basis,… More >

  • Open Access

    ARTICLE

    AFM and Nanoindentation Studies of Bone Nodules on Chitosan-Polygalacturonic Acid-Hydroxyapatite Nanocomposites

    R. Khanna1,2, D. R. Katti1, K. S. Katti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 530-556, 2012, DOI:10.3970/cmes.2012.087.530

    Abstract Here we report a new in situ nanoindentation technique developed to evaluate the composite mechanical behavior of cell-biomaterial construct under physiological conditions over the time scale of bone nodule generation. Using this technique, mechanical behavior of osteoblast cell-substrate interfaces on tissue engineered materials (chitosan-polygalacturonic acid-nanohydroxyapatite (CPH) films) is investigated. Mechanical behavior of cells in the elastic regime over the time scale of cell adhesion (1 day), proliferation (4 days), development (8 days) and maturation (22 days) of bone nodules is evaluated. Our results indicate that the elastic properties of flat cells are higher (indicating stiffer response, after 4 days, as… More >

  • Open Access

    ARTICLE

    MicroCT/Micromechanics-Based Finite Element Models and Quasi-Static Unloading Tests Deliver Consistent Values for Young's Modulus of Rapid-Prototyped Polymer-Ceramic Tissue Engineering Scaffold

    K.W. Luczynski1, A. Dejaco1, O. Lahayne1, J. Jaroszewicz2, W.Swieszkowski2, C. Hellmich1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 505-529, 2012, DOI:10.3970/cmes.2012.087.505

    Abstract A 71 volume-% macroporous tissue engineering scaffold made of poly-l-lactide (PLLA) with 10 mass-% of pseudo-spherical tri-calcium phosphate (TCP) inclusions (exhibiting diameters in the range of several nanometers) was microCT-scanned. The corresponding stack of images was converted into regular Finite Element (FE) models consisting of around 100,000 to 1,000,000 finite elements. Therefore, the attenuation-related, voxel-specific grey values were converted into TCP-contents, and the latter, together with nanoindentation tests,entered a homogenization scheme of the Mori-Tanaka type, as to deliver voxel-specific (and hence, finite element-specific) elastic properties. These FE models were uniaxially loaded, giving access to the macroscopic Young's modulus of the… More >

  • Open Access

    ARTICLE

    Functionally Graded Materials (FGMs) with Predictable and Controlled Gradient Profiles: Computational Modelling and Realisation

    G. Mattei1,2, A. Tirella1,2, A. Ahluwalia1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 483-504, 2012, DOI:10.3970/cmes.2012.087.483

    Abstract Biological function is intricately linked with structure. Many biological structures are characterised by functional spatially distributed gradients in which each layer has one or more specific functions to perform. Reproducing such structures is challenging, and usually an experimental trial-and-error approach is used. In this paper we investigate how the gravitational sedimentation of discrete solid particles (secondary phase) within a primary fluid phase with a time-varying dynamic viscosity can be used for the realisation of stable and reproducible continuous functionally graded materials (FGMs). Computational models were used to simulate the distribution of a particle phase in a fluid domain. Firstly a… More >

  • Open Access

    ARTICLE

    Rebirth of a Discipline: "Knowledge Engineering"

    Ziya Aktas1, Semih Cetin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.2, pp. 133-162, 2011, DOI:10.3970/cmes.2011.076.133

    Abstract The knowledge society has been developed and shaped by amazing improvements during the last two decades. On that development and improvement, social sciences such as psychology or anthropology have also had significant impact as much as real sciences like medicine or engineering, in particular, Information Technology or Information and Communications Technology. The new trends and explosion of knowledge due to Internet and Web technologies have radically changed the way we structure business and its main building block, i.e. "knowledge". Though information/knowledge system development efforts have been regarded formerly as mere information technology activities, now we have been experiencing alternative ways… More >

  • Open Access

    ARTICLE

    ALE Formulation and Simulation Techniques in Integrated Computer Aided Design and Engineering System with Industrial Metal Forming Applications

    A. Gakwaya1, H. Sharifi2, M. Guillot1, M. Souli3, F. Erchiqui4

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.3, pp. 209-266, 2011, DOI:10.3970/cmes.2011.073.209

    Abstract A mechanical computer aided design and engineering system can be used to reduce the design-to-manufacture cycle time in metal forming process. Such a system could be built upon a solid modeling geometry engine and an efficient finite element (FE) solver. The maintenance of a high-quality mesh throughout the analysis is an essential feature of an efficient finite element simulation of large strain metal forming problems. In this paper, a mesh adaptation technique employing the Arbitrary Lagrangian-Eulerian formulation (ALE) is applied to some industrial metal forming problems. An ACIS boundary representation of the solid model is employed. This type of representation… More >

Displaying 271-280 on page 28 of 292. Per Page