Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (382)
  • Open Access

    ARTICLE

    An Evaluation of Multigrid Acceleration for the Simulation of an Edge FLame in a Mixing Layer

    M. Wasserman1,2, Y. Mor-Yossef1,2, J.B. Greenberg1

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.3, pp. 203-228, 2015, DOI:10.3970/cmes.2015.106.203

    Abstract A test problem of a laminar edge flame formed in the mixing layer of two initially separated streams of fuel and oxidant is employed to evaluate the performance of multigrid acceleration of the iterative solution of the central difference finite difference scheme approximating the governing energy and species mass fraction conservation equations. The multigrid method was found to be extremely efficient and significantly improved the iterative convergence relative to that of a single grid method. For low to moderate chemical Damkohler numbers, acceleration factors of up to six (6!) times were recorded in the computational time required to obtain iterative… More >

  • Open Access

    ARTICLE

    Design Evaluation of a Particle Bombardment System Used to Deliver Substances into Cells

    Eduardo M. B. Campello1,2, Tarek I. Zohdi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 221-245, 2014, DOI:10.3970/cmes.2014.098.221

    Abstract This work deals with the bombardment of a stream of particles possessing varying mean particle size, velocity and aspect ratio into a cell that has fixed (known) compliance characteristics. The particles are intended to penetrate the cell membrane causing zero or minimum damage and deliver foreign substances (which are attached to their surfaces) to the interior of the cell. We adopt a particle-based (discrete element method) computational model that has been recently developed by the authors to describe both the incoming stream of particles and the cell membrane. By means of parametric numerical simulations, treating the stream’s mean particle size,… More >

  • Open Access

    ARTICLE

    A comparative study of three domain-integral evaluation techniques in the boundary-domain integral equation method for transient thermoelastic crack analysis in FGMs

    A.V. Ekhlakov1,2, O.M. Khay1,3, Ch. Zhang1, X.W. Gao4, J. Sladek5, V. Sladek5

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.6, pp. 595-614, 2013, DOI:10.3970/cmes.2013.092.595

    Abstract A boundary-domain integral equation method is applied to the transient thermoelastic crack analysis in functionally graded materials. Fundamental solutions for homogeneous, isotropic and linear elastic materials are used to derive the boundary-domain integral equations. The radial integration method, the Cartesian transformation method and the cell-integration method are applied for the evaluation of the arising domain-integrals. Numerical results for dynamic stress intensity factors obtained by the three approaches are presented, compared and discussed to show the accuracy and the efficiency of the domain-integral evaluation techniques. More >

  • Open Access

    ARTICLE

    Computer Implementations with 3D Simulations of Models for Quick Estimations of Fragments Trajectories, Penetrations and Safety Evaluations Due to Detonations of Explosives

    Lior Banai

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.5, pp. 351-366, 2012, DOI:10.3970/cmes.2012.088.351

    Abstract The explosive Engineering field is a costly one in which not every organization can effort the time and money it takes to performed field tests on its explosives. The purpose of this article is to present a program that was developed in the Israeli Navy for performance estimations and safety issues of warheads and explosives. With a relative small developing time one can create a tool that gives preliminary results in a few minutes without the need to design and order a field tests or run finite elements analyses. By implementing a few known models, in this tool, the user… More >

  • Open Access

    ARTICLE

    Precise Evaluation of Vehicles Emission in Urban Traffic Using Multi-agent-based Traffic Simulator MATES

    Hideki Fujii1, Shinobu Yoshimura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.1, pp. 49-64, 2012, DOI:10.3970/cmes.2012.088.049

    Abstract Recently, global warming issues have been discussed all over the world. Of the total amount of CO2 emitted in Japan, a transportation sector is responsible for 20%. In the transportation sector, 90% of the emission is due to road traffic. This amount must be reduced drastically to realize a low-carbon society. To do so, various measures have been discussed, and the effects of the measures must be estimated quantitatively. In conventional measurement methods, the amount of vehicle emission is simply calculated by multiplying travel distance or gasoline consumption by a specified emission coefficient. Such an approach neglects the effects of… More >

  • Open Access

    ARTICLE

    Evaluation of Explicit-form Fundamental Solutions for Displacements and Stresses in 3D Anisotropic Elastic Solids

    Y. C. Shiah1, C. L. Tan2, V.G. Lee3

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.3, pp. 205-226, 2008, DOI:10.3970/cmes.2008.034.205

    Abstract The main impediment to the development of efficient algorithms for the stress analysis of 3D generally anisotropic elastic solids using the boundary element method (BEM) and the local boundary integral equation (LBIE) meshless method over the years is the complexity of the fundamental solutions and the computational burden to evaluate them. The ability to analytically simplify and reduce them into as explicit a form as possible so that they can be directly computed will offer significant cost savings. In addition, they facilitate easy implementation using existing numerical algorithms with the above-mentioned methods that have been developed for isotropy. In this… More >

  • Open Access

    ARTICLE

    Evaluation of T-stress for An Interface Crack between Dissimilar Anisotropic Materials Using the Boundary Element Method

    P.D. Shah1, C.L. Tan1,2, X. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 185-198, 2006, DOI:10.3970/cmes.2006.013.185

    Abstract In this paper, the path independent mutual or M-integral for the computation of the T-stress for interface cracks between dissimilar anisotropic, linear elastic solids, is developed. The required auxiliary field solution is derived from the solution of the problem of an anisotropic composite wedge subjected to a point force at its apex. The Boundary Element Method (BEM) is employed for the numerical stress analysis in which special crack-tip elements with the proper oscillatory traction singularity are used. The successful implementation of the procedure for evaluating the T-stress in a bi-material interface crack and its application are demonstrated by numerical examples. More >

  • Open Access

    ARTICLE

    General distance transformation for the numerical evaluation of nearly singular integrals in BEM

    J.H. Lv1, Y. Miao1,2, H.P. Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.2, pp. 101-117, 2013, DOI:10.3970/cmes.2013.091.101

    Abstract The accurate and efficient evaluation of nearly singular integrals is one of the major concerned problems in the implementation of the boundary element method (BEM). Among the various commonly used nonlinear transformation methods, the distance transformation technique seems to be a promising method to deal with various orders of nearly singular integrals both in potential and elasticity problems. In this paper, some drawbacks of the conventional distance transformation, such as the sensitivity to the position of projection point, are investigated by numerical tests. A general distance transformation technique is developed to circumvent these drawbacks, which is aimed to remove or… More >

  • Open Access

    ARTICLE

    An Improved Numerical Evaluation Scheme of the Fundamental Solution and its Derivatives for 3D Anisotropic Elasticity Based on Fourier Series

    Y.C. Shiah1, C. L. Tan2, C.Y. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.1, pp. 1-22, 2012, DOI:10.3970/cmes.2012.087.001

    Abstract The fundamental solution, or Green's function, for 3D anisotropic elastostatics as derived by Ting and Lee (1997) [Q.J. Mech. Appl. Math.; 50: 407-426] is one that is fully explicit and algebraic in form. It has, however, only been utilized in boundary element method (BEM) formulations quite recently even though it is relatively straightforward and direct to implement. This Green's function and its derivatives are necessary items in this numerical analysis technique. By virtue of the periodic nature of the angles when it is expressed in the spherical coordinate system, the present authors have very recently represented the Green's function as… More >

  • Open Access

    ARTICLE

    Higher-Order Green's Function Derivatives and BEM Evaluation of Stresses at Interior Points in a 3D Generally Anisotropic Solid

    Y.C. Shiah1, C. L. Tan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.2, pp. 95-108, 2011, DOI:10.3970/cmes.2011.078.095

    Abstract By differentiating the Green function of Ting and Lee (1997) for 3D general anisotropic elastotatics in a spherical coordinate system as an intermediate step, and then using the chain rule, derivatives of up to the second order of this fundamental solution are obtained in exact, explicit, algebraic forms. No tensors of order higher than two are present in these derivatives, thereby allowing these quantities to be numerically evaluated quite expeditiously. These derivatives are required for the computation of the internal point displacements and stresses via Somigliana's identity in BEM analysis. Some examples are presented to demonstrate their successful implementation to… More >

Displaying 351-360 on page 36 of 382. Per Page