Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (296)
  • Open Access

    ARTICLE

    Optimal Deep Belief Network Enabled Malware Detection and Classification Model

    P. Pandi Chandran1,*, N. Hema Rajini2, M. Jeyakarthic3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3349-3364, 2023, DOI:10.32604/iasc.2023.029946 - 17 August 2022

    Abstract Cybercrime has increased considerably in recent times by creating new methods of stealing, changing, and destroying data in daily lives. Portable Document Format (PDF) has been traditionally utilized as a popular way of spreading malware. The recent advances of machine learning (ML) and deep learning (DL) models are utilized to detect and classify malware. With this motivation, this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification (MFODBN-MDC) technique. The major intention of the MFODBN-MDC technique is for identifying and classifying the presence of malware… More >

  • Open Access

    ARTICLE

    An Intelligent Hybrid Ensemble Gene Selection Model for Autism Using DNN

    G. Anurekha*, P. Geetha

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3049-3064, 2023, DOI:10.32604/iasc.2023.029127 - 17 August 2022

    Abstract Autism Spectrum Disorder (ASD) is a complicated neurodevelopmental disorder that is often identified in toddlers. The microarray data is used as a diagnostic tool to identify the genetics of the disorder. However, microarray data is large and has a high volume. Consequently, it suffers from the problem of dimensionality. In microarray data, the sample size and variance of the gene expression will lead to overfitting and misclassification. Identifying the autism gene (feature) subset from microarray data is an important and challenging research area. It has to be efficiently addressed to improve gene feature selection and… More >

  • Open Access

    ARTICLE

    Mango Pest Detection Using Entropy-ELM with Whale Optimization Algorithm

    U. Muthaiah1,*, S. Chitra2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3447-3458, 2023, DOI:10.32604/iasc.2023.028869 - 17 August 2022

    Abstract Image processing, agricultural production, and field monitoring are essential studies in the research field. Plant diseases have an impact on agricultural production and quality. Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops. Manually identifying the agricultural pests is usually evident in plants; also, it takes more time and is an expensive technique. A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations. An atmosphere generates vast amounts of data as it is monitored closely; the evaluation of this big… More >

  • Open Access

    ARTICLE

    Feature Selection with Optimal Variational Auto Encoder for Financial Crisis Prediction

    Kavitha Muthukumaran*, K. Hariharanath, Vani Haridasan

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 887-901, 2023, DOI:10.32604/csse.2023.030627 - 16 August 2022

    Abstract Financial crisis prediction (FCP) received significant attention in the financial sector for decision-making. Proper forecasting of the number of firms possible to fail is important to determine the growth index and strength of a nation’s economy. Conventionally, numerous approaches have been developed in the design of accurate FCP processes. At the same time, classifier efficacy and predictive accuracy are inadequate for real-time applications. In addition, several established techniques carry out well to any of the specific datasets but are not adjustable to distinct datasets. Thus, there is a necessity for developing an effectual prediction technique… More >

  • Open Access

    ARTICLE

    Optimal Deep Belief Network Based Lung Cancer Detection and Survival Rate Prediction

    Sindhuja Manickavasagam1,*, Poonkuzhali Sugumaran2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 939-953, 2023, DOI:10.32604/csse.2023.030491 - 16 August 2022

    Abstract The combination of machine learning (ML) approaches in healthcare is a massive advantage designed at curing illness of millions of persons. Several efforts are used by researchers for detecting and providing primary phase insights as to cancer analysis. Lung cancer remained the essential source of disease connected mortality for both men as well as women and their frequency was increasing around the world. Lung disease is the unrestrained progress of irregular cells which begin off in one or both Lungs. The previous detection of cancer is not simpler procedure however if it can be detected,… More >

  • Open Access

    ARTICLE

    An Efficient Unsupervised Learning Approach for Detecting Anomaly in Cloud

    P. Sherubha1,*, S. P. Sasirekha2, A. Dinesh Kumar Anguraj3, J. Vakula Rani4, Raju Anitha3, S. Phani Praveen5,6, R. Hariharan Krishnan5,6

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 149-166, 2023, DOI:10.32604/csse.2023.024424 - 16 August 2022

    Abstract The Cloud system shows its growing functionalities in various industrial applications. The safety towards data transfer seems to be a threat where Network Intrusion Detection System (NIDS) is measured as an essential element to fulfill security. Recently, Machine Learning (ML) approaches have been used for the construction of intellectual IDS. Most IDS are based on ML techniques either as unsupervised or supervised. In supervised learning, NIDS is based on labeled data where it reduces the efficiency of the reduced model to identify attack patterns. Similarly, the unsupervised model fails to provide a satisfactory outcome. Hence,… More >

  • Open Access

    ARTICLE

    SA-MSVM: Hybrid Heuristic Algorithm-based Feature Selection for Sentiment Analysis in Twitter

    C. P. Thamil Selvi1,*, R. PushpaLakshmi2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2439-2456, 2023, DOI:10.32604/csse.2023.029254 - 01 August 2022

    Abstract One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics. Bigdata is created from social websites like Facebook, WhatsApp, Twitter, etc. Opinions about products, persons, initiatives, political issues, research achievements, and entertainment are discussed on social websites. The unique data analytics method cannot be applied to various social websites since the data formats are different. Several approaches, techniques, and tools have been used for big data analytics, opinion mining, or sentiment analysis, but the accuracy is yet to be improved. The proposed work is motivated to do… More >

  • Open Access

    ARTICLE

    Optimal Machine Learning Enabled Performance Monitoring for Learning Management Systems

    Ashit Kumar Dutta1,*, Mazen Mushabab Alqahtani2, Yasser Albagory3, Abdul Rahaman Wahab Sait4, Majed Alsanea5

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2277-2292, 2023, DOI:10.32604/csse.2023.028107 - 01 August 2022

    Abstract Learning Management System (LMS) is an application software that is used in automation, delivery, administration, tracking, and reporting of courses and programs in educational sector. The LMS which exploits machine learning (ML) has the ability of accessing user data and exploit it for improving the learning experience. The recently developed artificial intelligence (AI) and ML models helps to accomplish effective performance monitoring for LMS. Among the different processes involved in ML based LMS, feature selection and classification processes find beneficial. In this motivation, this study introduces Glowworm-based Feature Selection with Machine Learning Enabled Performance Monitoring… More >

  • Open Access

    ARTICLE

    Cat and Mouse Optimizer with Artificial Intelligence Enabled Biomedical Data Classification

    B. Kalpana1, S. Dhanasekaran2, T. Abirami3, Ashit Kumar Dutta4, Marwa Obayya5, Jaber S. Alzahrani6, Manar Ahmed Hamza7,*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2243-2257, 2023, DOI:10.32604/csse.2023.027129 - 01 August 2022

    Abstract Biomedical data classification has become a hot research topic in recent years, thanks to the latest technological advancements made in healthcare. Biomedical data is usually examined by physicians for decision making process in patient treatment. Since manual diagnosis is a tedious and time consuming task, numerous automated models, using Artificial Intelligence (AI) techniques, have been presented so far. With this motivation, the current research work presents a novel Biomedical Data Classification using Cat and Mouse Based Optimizer with AI (BDC-CMBOAI) technique. The aim of the proposed BDC-CMBOAI technique is to determine the occurrence of diseases… More >

  • Open Access

    ARTICLE

    Colliding Bodies Optimization with Machine Learning Based Parkinson’s Disease Diagnosis

    Ashit Kumar Dutta1,*, Nazik M. A. Zakari2, Yasser Albagory3, Abdul Rahaman Wahab Sait4

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2195-2207, 2023, DOI:10.32604/csse.2023.026461 - 01 August 2022

    Abstract Parkinson’s disease (PD) is one of the primary vital degenerative diseases that affect the Central Nervous System among elderly patients. It affect their quality of life drastically and millions of seniors are diagnosed with PD every year worldwide. Several models have been presented earlier to detect the PD using various types of measurement data like speech, gait patterns, etc. Early identification of PD is important owing to the fact that the patient can offer important details which helps in slowing down the progress of PD. The recently-emerging Deep Learning (DL) models can leverage the past… More >

Displaying 161-170 on page 17 of 296. Per Page