Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (246)
  • Open Access

    ARTICLE

    Performance Evaluation of Machine Learning Algorithms in Reduced Dimensional Spaces

    Kaveh Heidary1,*, Venkata Atluri1, John Bland2

    Journal of Cyber Security, Vol.6, pp. 69-87, 2024, DOI:10.32604/jcs.2024.051196

    Abstract This paper investigates the impact of reducing feature-vector dimensionality on the performance of machine learning (ML) models. Dimensionality reduction and feature selection techniques can improve computational efficiency, accuracy, robustness, transparency, and interpretability of ML models. In high-dimensional data, where features outnumber training instances, redundant or irrelevant features introduce noise, hindering model generalization and accuracy. This study explores the effects of dimensionality reduction methods on binary classifier performance using network traffic data for cybersecurity applications. The paper examines how dimensionality reduction techniques influence classifier operation and performance across diverse performance metrics for seven ML models. Four… More >

  • Open Access

    ARTICLE

    A Feature Selection Method Based on Hybrid Dung Beetle Optimization Algorithm and Slap Swarm Algorithm

    Wei Liu*, Tengteng Ren

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2979-3000, 2024, DOI:10.32604/cmc.2024.053627

    Abstract Feature Selection (FS) is a key pre-processing step in pattern recognition and data mining tasks, which can effectively avoid the impact of irrelevant and redundant features on the performance of classification models. In recent years, meta-heuristic algorithms have been widely used in FS problems, so a Hybrid Binary Chaotic Salp Swarm Dung Beetle Optimization (HBCSSDBO) algorithm is proposed in this paper to improve the effect of FS. In this hybrid algorithm, the original continuous optimization algorithm is converted into binary form by the S-type transfer function and applied to the FS problem. By combining the… More >

  • Open Access

    ARTICLE

    An Attention-Based Approach to Enhance the Detection and Classification of Android Malware

    Abdallah Ghourabi*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2743-2760, 2024, DOI:10.32604/cmc.2024.053163

    Abstract The dominance of Android in the global mobile market and the open development characteristics of this platform have resulted in a significant increase in malware. These malicious applications have become a serious concern to the security of Android systems. To address this problem, researchers have proposed several machine-learning models to detect and classify Android malware based on analyzing features extracted from Android samples. However, most existing studies have focused on the classification task and overlooked the feature selection process, which is crucial to reduce the training time and maintain or improve the classification results. The… More >

  • Open Access

    ARTICLE

    5G Resource Allocation Using Feature Selection and Greylag Goose Optimization Algorithm

    Amel Ali Alhussan1, S. K. Towfek2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1179-1201, 2024, DOI:10.32604/cmc.2024.049874

    Abstract In the contemporary world of highly efficient technological development, fifth-generation technology (5G) is seen as a vital step forward with theoretical maximum download speeds of up to twenty gigabits per second (Gbps). As far as the current implementations are concerned, they are at the level of slightly below 1 Gbps, but this allowed a great leap forward from fourth generation technology (4G), as well as enabling significantly reduced latency, making 5G an absolute necessity for applications such as gaming, virtual conferencing, and other interactive electronic processes. Prospects of this change are not limited to connectivity… More >

  • Open Access

    ARTICLE

    A Multivariate Relevance Frequency Analysis Based Feature Selection for Classification of Short Text Data

    Saravanan Arumugam*

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 989-1008, 2024, DOI:10.32604/csse.2024.051770

    Abstract Text mining presents unique challenges in extracting meaningful information from the vast volumes of digital documents. Traditional filter feature selection methods often fall short in handling the complexities of short text data. To address this issue, this paper presents a novel approach to feature selection in text classification, aiming to overcome challenges posed by high dimensionality and reduced accuracy in the face of increasing digital document volumes. Unlike traditional filter feature selection techniques, the proposed method, Multivariate Relevance Frequency Analysis, offers a tailored solution for diverse text data types. By integrating positive, negative, and dependency… More >

  • Open Access

    ARTICLE

    Microarray Gene Expression Classification: An Efficient Feature Selection Using Hybrid Swarm Intelligence Algorithm

    Punam Gulande*, R. N. Awale

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 937-952, 2024, DOI:10.32604/csse.2024.046123

    Abstract The study of gene expression has emerged as a vital tool for cancer diagnosis and prognosis, particularly with the advent of microarray technology that enables the measurement of thousands of genes in a single sample. While this wealth of data offers invaluable insights for disease management, the high dimensionality poses a challenge for multiclass classification. In this context, selecting relevant features becomes essential to enhance classification model performance. Swarm Intelligence algorithms have proven effective in addressing this challenge, owing to their ability to navigate intricate, non-linear feature-class relationships. This paper introduces a novel hybrid swarm More >

  • Open Access

    ARTICLE

    Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks

    Asad Raza1,*, Shahzad Memon1, Muhammad Ali Nizamani1, Mahmood Hussain Shah2

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 545-566, 2024, DOI:10.32604/iasc.2024.051779

    Abstract Smart Industrial environments use the Industrial Internet of Things (IIoT) for their routine operations and transform their industrial operations with intelligent and driven approaches. However, IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet. Traditional signature-based IDS are effective in detecting known attacks, but they are unable to detect unknown emerging attacks. Therefore, there is the need for an IDS which can learn from data and detect new threats. Ensemble Machine Learning (ML) and individual Deep Learning (DL) based IDS have been developed, and these individual models achieved… More >

  • Open Access

    ARTICLE

    Enhanced Arithmetic Optimization Algorithm Guided by a Local Search for the Feature Selection Problem

    Sana Jawarneh*

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 511-525, 2024, DOI:10.32604/iasc.2024.047126

    Abstract High-dimensional datasets present significant challenges for classification tasks. Dimensionality reduction, a crucial aspect of data preprocessing, has gained substantial attention due to its ability to improve classification performance. However, identifying the optimal features within high-dimensional datasets remains a computationally demanding task, necessitating the use of efficient algorithms. This paper introduces the Arithmetic Optimization Algorithm (AOA), a novel approach for finding the optimal feature subset. AOA is specifically modified to address feature selection problems based on a transfer function. Additionally, two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision, slow More >

  • Open Access

    ARTICLE

    A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics—A Supply Chain Backlog Elimination Framework

    Yasser Hachaichi1, Ayman E. Khedr1, Amira M. Idrees2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4081-4105, 2024, DOI:10.32604/cmc.2024.048929

    Abstract The diversity of data sources resulted in seeking effective manipulation and dissemination. The challenge that arises from the increasing dimensionality has a negative effect on the computation performance, efficiency, and stability of computing. One of the most successful optimization algorithms is Particle Swarm Optimization (PSO) which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task. This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which… More >

  • Open Access

    ARTICLE

    Research on the Icing Diagnosis of Wind Turbine Blades Based on FS–XGBoost–EWMA

    Jicai Guo1,2, Xiaowen Song1,2,*, Chang Liu1,2, Yanfeng Zhang1,2, Shijie Guo1,2, Jianxin Wu1,2, Chang Cai3, Qing’an Li3,*

    Energy Engineering, Vol.121, No.7, pp. 1739-1758, 2024, DOI:10.32604/ee.2024.048854

    Abstract In winter, wind turbines are susceptible to blade icing, which results in a series of energy losses and safe operation problems. Therefore, blade icing detection has become a top priority. Conventional methods primarily rely on sensor monitoring, which is expensive and has limited applications. Data-driven blade icing detection methods have become feasible with the development of artificial intelligence. However, the data-driven method is plagued by limited training samples and icing samples; therefore, this paper proposes an icing warning strategy based on the combination of feature selection (FS), eXtreme Gradient Boosting (XGBoost) algorithm, and exponentially weighted… More >

Displaying 1-10 on page 1 of 246. Per Page