Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (296)
  • Open Access

    ARTICLE

    An Effective Classifier Model for Imbalanced Network Attack Data

    Gürcan Çetin*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4519-4539, 2022, DOI:10.32604/cmc.2022.031734 - 28 July 2022

    Abstract Recently, machine learning algorithms have been used in the detection and classification of network attacks. The performance of the algorithms has been evaluated by using benchmark network intrusion datasets such as DARPA98, KDD’99, NSL-KDD, UNSW-NB15, and Caida DDoS. However, these datasets have two major challenges: imbalanced data and high-dimensional data. Obtaining high accuracy for all attack types in the dataset allows for high accuracy in imbalanced datasets. On the other hand, having a large number of features increases the runtime load on the algorithms. A novel model is proposed in this paper to overcome these… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Threat Detection in Industrial Internet of Things Environment

    Fahad F. Alruwaili*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5809-5824, 2022, DOI:10.32604/cmc.2022.031613 - 28 July 2022

    Abstract Internet of Things (IoT) is one of the hottest research topics in recent years, thanks to its dynamic working mechanism that integrates physical and digital world into a single system. IoT technology, applied in industries, is termed as Industrial IoT (IIoT). IIoT has been found to be highly susceptible to attacks from adversaries, based on the difficulties observed in IIoT and its increased dependency upon internet and communication network. Intentional or accidental attacks on these approaches result in catastrophic effects like power outage, denial of vital health services, disruption to civil service, etc., Thus, there… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuned Deep Learning Enabled Intrusion Detection on Internet of Everything Environment

    Manar Ahmed Hamza1,2,*, Aisha Hassan Abdalla Hashim1, Heba G. Mohamed3, Saud S. Alotaibi4, Hany Mahgoub5,6, Amal S. Mehanna7, Abdelwahed Motwakel2

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6579-6594, 2022, DOI:10.32604/cmc.2022.031303 - 28 July 2022

    Abstract Internet of Everything (IoE), the recent technological advancement, represents an interconnected network of people, processes, data, and things. In recent times, IoE gained significant attention among entrepreneurs, individuals, and communities owing to its realization of intense values from the connected entities. On the other hand, the massive increase in data generation from IoE applications enables the transmission of big data, from context-aware machines, into useful data. Security and privacy pose serious challenges in designing IoE environment which can be addressed by developing effective Intrusion Detection Systems (IDS). In this background, the current study develops Intelligent… More >

  • Open Access

    ARTICLE

    URL Phishing Detection Using Particle Swarm Optimization and Data Mining

    Saeed M. Alshahrani1, Nayyar Ahmed Khan1,*, Jameel Almalki2, Waleed Al Shehri2

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5625-5640, 2022, DOI:10.32604/cmc.2022.030982 - 28 July 2022

    Abstract The continuous destruction and frauds prevailing due to phishing URLs make it an indispensable area for research. Various techniques are adopted in the detection process, including neural networks, machine learning, or hybrid techniques. A novel detection model is proposed that uses data mining with the Particle Swarm Optimization technique (PSO) to increase and empower the method of detecting phishing URLs. Feature selection based on various techniques to identify the phishing candidates from the URL is conducted. In this approach, the features mined from the URL are extracted using data mining rules. The features are selected… More >

  • Open Access

    ARTICLE

    Intrusion Detection System Using a Distributed Ensemble Design Based Convolutional Neural Network in Fog Computing

    Aiming Wu1, Shanshan Tu1,*, Muhammad Wagas1,2,3, Yongjie Yang1, Yihe Zhang1, Xuetao Bai1

    Journal of Information Hiding and Privacy Protection, Vol.4, No.1, pp. 25-39, 2022, DOI:10.32604/jihpp.2022.029922 - 17 June 2022

    Abstract With the rapid development of the Internet of Things (IoT), all kinds of data are increasing exponentially. Data storage and computing on cloud servers are increasingly restricted by hardware. This has prompted the development of fog computing. Fog computing is to place the calculation and storage of data at the edge of the network, so that the entire Internet of Things system can run more efficiently. The main function of fog computing is to reduce the burden of cloud servers. By placing fog nodes in the IoT network, the data in the IoT devices can… More >

  • Open Access

    ARTICLE

    Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images

    Nagwan Abdel Samee1, El-Sayed M. El-Kenawy2,3, Ghada Atteia1,*, Mona M. Jamjoom4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, Noha E. El-Attar8, Tarek Gaber9,10, Adam Slowik11, Mahmoud Y. Shams12

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4193-4210, 2022, DOI:10.32604/cmc.2022.031147 - 16 June 2022

    Abstract As corona virus disease (COVID-19) is still an ongoing global outbreak, countries around the world continue to take precautions and measures to control the spread of the pandemic. Because of the excessive number of infected patients and the resulting deficiency of testing kits in hospitals, a rapid, reliable, and automatic detection of COVID-19 is in extreme need to curb the number of infections. By analyzing the COVID-19 chest X-ray images, a novel metaheuristic approach is proposed based on hybrid dipper throated and particle swarm optimizers. The lung region was segmented from the original chest X-ray… More >

  • Open Access

    ARTICLE

    Cuckoo Optimized Convolution Support Vector Machine for Big Health Data Processing

    Eatedal Alabdulkreem1, Jaber S. Alzahrani2, Majdy M. Eltahir3, Abdullah Mohamed4, Manar Ahmed Hamza5,*, Abdelwahed Motwakel5, Mohamed I. Eldesouki6, Mohammed Rizwanullah5

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3039-3055, 2022, DOI:10.32604/cmc.2022.029835 - 16 June 2022

    Abstract Big health data collection and storing for further analysis is a challenging task because this knowledge is big and has many features. Several cloud-based IoT health providers have been described in the literature previously. Furthermore, there are a number of issues related to time consumed and overall network performance when it comes to big data information. In the existing method, less performed optimization algorithms were used for optimizing the data. In the proposed method, the Chaotic Cuckoo Optimization algorithm was used for feature selection, and Convolutional Support Vector Machine (CSVM) was used. The research presents… More >

  • Open Access

    ARTICLE

    Improved Metaheuristics with Machine Learning Enabled Medical Decision Support System

    Sara A. Althubiti1, José Escorcia-Gutierrez2,3,*, Margarita Gamarra4, Roosvel Soto-Diaz5, Romany F. Mansour6, Fayadh Alenezi7

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2423-2439, 2022, DOI:10.32604/cmc.2022.028878 - 16 June 2022

    Abstract Smart healthcare has become a hot research topic due to the contemporary developments of Internet of Things (IoT), sensor technologies, cloud computing, and others. Besides, the latest advances of Artificial Intelligence (AI) tools find helpful for decision-making in innovative healthcare to diagnose several diseases. Ovarian Cancer (OC) is a kind of cancer that affects women’s ovaries, and it is tedious to identify OC at the primary stages with a high mortality rate. The OC data produced by the Internet of Medical Things (IoMT) devices can be utilized to differentiate OC. In this aspect, this paper… More >

  • Open Access

    ARTICLE

    Email Filtering Using Hybrid Feature Selection Model

    Adel Hamdan Mohammad1,* , Sami Smadi2, Tariq Alwada’n3

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 435-450, 2022, DOI:10.32604/cmes.2022.020088 - 15 June 2022

    Abstract Undoubtedly, spam is a serious problem, and the number of spam emails is increased rapidly. Besides, the massive number of spam emails prompts the need for spam detection techniques. Several methods and algorithms are used for spam filtering. Also, some emergent spam detection techniques use machine learning methods and feature extraction. Some methods and algorithms have been introduced for spam detecting and filtering. This research proposes two models for spam detection and feature selection. The first model is evaluated with the email spam classification dataset, which is based on reducing the number of keywords to… More >

  • Open Access

    ARTICLE

    Deep Learning Based Distributed Intrusion Detection in Secure Cyber Physical Systems

    P. Ramadevi1,*, K. N. Baluprithviraj2, V. Ayyem Pillai3, Kamalraj Subramaniam4

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 2067-2081, 2022, DOI:10.32604/iasc.2022.026377 - 25 May 2022

    Abstract Cyber Physical Systems (CPSs) are network systems containing cyber (computation, communication) and physical (sensors, actuators) components that interact with each other through feedback loop with the help of human intervention. The dynamic and disseminated characteristics of CPS environment makes it vulnerable to threats that exist in virtualization process. Due to this, several security issues are presented in CPS. In order to address the challenges, there is a need exists to extend the conventional security solutions such as Intrusion Detection Systems (IDS) to handle high speed network data traffic and adaptive network pattern in cloud. Additionally,… More >

Displaying 181-190 on page 19 of 296. Per Page