Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (299)
  • Open Access

    ARTICLE

    Numerical Modelling of Drying Induced Cracks in Wood Discs Using the Extended Finite Element Method

    Zongying Fu1, Yongdong Zhou1, Tingguo Yan2, Yun Lu1,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 93-102, 2023, DOI:10.32604/jrm.2023.021808 - 10 August 2022

    Abstract Drying crack is a common phenomenon occurring during moisture discharge from wood, reducing efficient wood utilization. Drying crack is primarily caused by drying stress, and the reasonable methods for determining drying stress are sparse. In this study, the initiation and propagation of cracks during wood discs drying were simulated using the extended finite element method (XFEM). The distribution of drying stress and displacement was analyzed at different crack conditions based on the simulation results. This study aimed to solve the problem of the limitation of drying stress testing methods and provide a new idea for More >

  • Open Access

    ARTICLE

    NATURAL CONVECTION ANALYSIS OF A RECTANGULAR SHAPE HEATED BLOCK EMBEDDED IN SQUARE CAVITY

    Olanrewaju M. Oyewolaa,b,*, Samuel I. Afolabib

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-6, 2022, DOI:10.5098/hmt.19.38

    Abstract Numerical analysis of heat transfer by convection in a square with a rectangular shape heated block located at the top, center and bottommost has been numerically investigated by applying the principal partial differential equations governing mass, momentum and energy using discontinuous Galerkin weighted procedure for residual finite element with the view of examining the significance of position of rectangular shaped heated block encapsulated within the square cavity. The right wall being adiabatic while the other three walls are maintained at low constant temperature. The heated block is maintained constantly hot. The developed code of COMSOL More >

  • Open Access

    ARTICLE

    Numerical Investigation on Vibration Performance of Flexible Plates Actuated by Pneumatic Artificial Muscle

    Zhimin Zhao1,2, Jie Yan3, Shangbin Wang1,2, Yuanhao Tie4, Ning Feng1,2,5,*

    Sound & Vibration, Vol.56, No.4, pp. 307-317, 2022, DOI:10.32604/sv.2022.028797 - 03 March 2023

    Abstract This paper theoretically introduced the feasibility of changing the vibration characteristics of flexible plates by using bio-inspired, extremely light, and powerful Pneumatic Artificial Muscle (PAM) actuators. Many structural plates or shells are typically flexible and show high vibration sensitivity. For this reason, this paper provides a way to achieve active vibration control for suppressing the oscillations of these structures to meet strict stability, safety, and comfort requirements. The dynamic behaviors of the designed plates are modeled by using the finite element (FE) method. As is known, the output force vs. contraction curve of PAM is nonlinear… More >

  • Open Access

    ARTICLE

    Tactile Response Characterization of a Dynamic System Using Craig-Bampton Method

    S. Pradeepkumar*, P. Nagaraj

    Sound & Vibration, Vol.56, No.3, pp. 221-233, 2022, DOI:10.32604/sv.2022.014889 - 10 August 2022

    Abstract Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring. The main focus is on managing the dynamic properties like vibration, noise, and harshness that occur during the operational mode. Tactile response is defined as the response of subsystem which is induced when a human body touches a vibrating system. Sub structuring is a computational method used to reduce the dynamic behavior of a large complex system with a smaller number of degrees of freedom without disturbing the mesh size of the… More >

  • Open Access

    PROCEEDINGS

    Transient Analysis of Micro/Nano Plates by Moving Finite Element Method

    Ladislav Sator1,*, Vladimir Sladek1, Jan Sladek1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-1, 2022, DOI:10.32604/icces.2022.08679

    Abstract The paper deals with transient analysis of homogeneous as well as FGM (functionally graded material) thin micro/nano plates subjected to transversal dynamic loading. within the highergrade continuum theory of elasticity. The microscopic structure of material is reflected in this higher-grade continuum theory via one material coefficient called the micro-length scale parameter. Furthermore the material can be composed of two micro-constituents what is included in the employed continuum model by functional gradation of the Young’s modulus through the plate thickness with assuming power-law dependence of volume fractions of micro-constituents on the transversal coordinate. The high order… More >

  • Open Access

    REVIEW

    Review of Numerical Simulation of TGO Growth in Thermal Barrier Coatings

    Quan Wen1, Fulei Jing1,*, Changxian Zhang1, Shibai Tang1, Junjie Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 361-391, 2022, DOI:10.32604/cmes.2022.019528 - 15 June 2022

    Abstract Thermally grown oxide (TGO) is a critical factor for the service life of thermal barrier coatings (TBC). Numerical simulations of the growth process of TGO have become an effective means of comprehensively understanding the progressive damage of the TBC system. At present, technologies of numerical simulation to TGO growth include two categories: coupled chemical-mechanical methods and mechanical equivalent methods. The former is based on the diffusion analysis of oxidizing elements, which can describe the influence of bond coat (BC) consumption and phase transformation in the growth process of TGO on the mechanical behavior of each More >

  • Open Access

    ARTICLE

    Mechanical Properties of Soil-Rock Mixture Filling in Fault Zone Based on Mesostructure

    Mei Tao1, Qingwen Ren1,*, Hanbing Bian2, Maosen Cao1, Yun Jia3

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 681-705, 2022, DOI:10.32604/cmes.2022.019522 - 15 June 2022

    Abstract Soil-rock mixture (SRM) filling in fault zone is an inhomogeneous geomaterial, which is composed of soil and rock block. It controls the deformation and stability of the abutment and dam foundation, and threatens the long-term safety of high arch dams. To study the macroscopic and mesoscopic mechanical properties of SRM, the development of a viable mesoscopic numerical simulation method with a mesoscopic model generation technology, and a reasonable parametric model is crucially desired to overcome the limitations of experimental conditions, specimen dimensions, and experiment fund. To this end, this study presents a mesoscopic numerical method… More >

  • Open Access

    ARTICLE

    A Cell-Based Linear Smoothed Finite Element Method for Polygonal Topology Optimization

    Changkye Lee1, Sundararajan Natarajan2, Seong-Hoon Kee3, Jurng-Jae Yee3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1615-1634, 2022, DOI:10.32604/cmes.2022.020377 - 19 April 2022

    Abstract The aim of this work is to employ a modified cell-based smoothed finite element method (S-FEM) for topology optimization with the domain discretized with arbitrary polygons. In the present work, the linear polynomial basis function is used as the weight function instead of the constant weight function used in the standard S-FEM. This improves the accuracy and yields an optimal convergence rate. The gradients are smoothed over each smoothing domain, then used to compute the stiffness matrix. Within the proposed scheme, an optimum topology procedure is conducted over the smoothing domains. Structural materials are distributed More >

  • Open Access

    ARTICLE

    Thermomechanical Behavior of Brake Drums Under Extreme Braking Conditions

    T. Khatir1,2, M. Bouchetara2, K. Derrar2, M. Djafri3, S. Khatir4, M. Abdel Wahab5,6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2259-2273, 2022, DOI:10.32604/cmc.2022.020879 - 29 March 2022

    Abstract Braking efficiency is characterized by reduced braking time and distance, and therefore passenger safety depends on the design of the braking system. During the braking of a vehicle, the braking system must dissipate the kinetic energy by transforming it into heat energy. A too high temperature can lead to an almost total loss of braking efficiency. An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface. Heat transfer and temperature gradient, not to forget the vehicle's travel environment (high speed, heavy load, and steeply… More >

  • Open Access

    ARTICLE

    Shape Sensing of Thin Shell Structure Based on Inverse Finite Element Method

    Zhanjun Wu1, Tengteng Li1, Jiachen Zhang2, Yifan Wu3, Jianle Li1, Lei Yang1, Hao Xu1,*

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 1-14, 2022, DOI:10.32604/sdhm.2022.019554 - 11 February 2022

    Abstract Shape sensing as a crucial component of structural health monitoring plays a vital role in real-time actuation and control of smart structures, and monitoring of structural integrity. As a model-based method, the inverse finite element method (iFEM) has been proved to be a valuable shape sensing tool that is suitable for complex structures. In this paper, we propose a novel approach for the shape sensing of thin shell structures with iFEM. Considering the structural form and stress characteristics of thin-walled structure, the error function consists of membrane and bending section strains only which is consistent… More >

Displaying 41-50 on page 5 of 299. Per Page