Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (286)
  • Open Access

    ARTICLE

    Shape Sensing of Thin Shell Structure Based on Inverse Finite Element Method

    Zhanjun Wu1, Tengteng Li1, Jiachen Zhang2, Yifan Wu3, Jianle Li1, Lei Yang1, Hao Xu1,*

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 1-14, 2022, DOI:10.32604/sdhm.2022.019554

    Abstract Shape sensing as a crucial component of structural health monitoring plays a vital role in real-time actuation and control of smart structures, and monitoring of structural integrity. As a model-based method, the inverse finite element method (iFEM) has been proved to be a valuable shape sensing tool that is suitable for complex structures. In this paper, we propose a novel approach for the shape sensing of thin shell structures with iFEM. Considering the structural form and stress characteristics of thin-walled structure, the error function consists of membrane and bending section strains only which is consistent… More >

  • Open Access

    ARTICLE

    Flow and Melting Thermal Transfer Enhancement Analysis of Alumina, Titanium Oxide-Based Maxwell Nanofluid Flow Inside Double Rotating Disks with Finite-Element Simulation

    Liangliang Chen1, Madeeha Tahir2,*, Sumeira Yasmin3, Taseer Muhammad4, Muhammad Imran5,*, Fenghua Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1771-1788, 2022, DOI:10.32604/cmes.2022.017539

    Abstract The energy produced by the melting stretching disks surface has a wide range of commercial applications, including semi-conductor material preparation, magma solidification, permafrost melting, and frozen land refreezing, among others. In view of this, in the current communication we analyzed magnetohydrodynamic flow of Maxwell nanofluid between two parallel rotating disks. Nanofluids are important due to their astonishing properties in heat conduction flows and in the enhancement of electronic and manufacturing devices. Furthermore, the distinct tiny-sized particles and in the Maxwell water-based fluid for enhancing the heat transfer rate are analyzed. The heat equation is developed… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Investigations of the Thermal Fatigue Lifetime of CBGA Packages

    Borui Yang1, Jun Luo2, Bo Wan1,*, Yutai Su1,3, Guicui Fu1, Xu Long3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 1113-1134, 2022, DOI:10.32604/cmes.2022.018037

    Abstract A thermal fatigue lifetime prediction model of ceramic ball grid array (CBGA) packages is proposed based on the Darveaux model. A finite element model of the CBGA packages is established, and the Anand model is used to describe the viscoplasticity of the CBGA solder. The average viscoplastic strain energy density increment ΔWave of the CBGA packages is obtained using a finite element simulation, and the influence of different structural parameters on the ΔWave is analyzed. A simplified analytical model of the ΔWave is established using the simulation data. The thermal fatigue lifetime of CBGA packages More >

  • Open Access

    ARTICLE

    Reduced Order Machine Learning Finite Element Methods: Concept, Implementation, and Future Applications

    Ye Lu1, Hengyang Li1, Sourav Saha2, Satyajit Mojumder2, Abdullah Al Amin1, Derick Suarez1, Yingjian Liu3, Dong Qian3, Wing Kam Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1351-1371, 2021, DOI:10.32604/cmes.2021.017719

    Abstract This paper presents the concept of reduced order machine learning finite element (FE) method. In particular, we propose an example of such method, the proper generalized decomposition (PGD) reduced hierarchical deeplearning neural networks (HiDeNN), called HiDeNN-PGD. We described first the HiDeNN interface seamlessly with the current commercial and open source FE codes. The proposed reduced order method can reduce significantly the degrees of freedom for machine learning and physics based modeling and is able to deal with high dimensional problems. This method is found more accurate than conventional finite element methods with a small portion More >

  • Open Access

    ARTICLE

    Matrix-Free Higher-Order Finite Element Method for Parallel Simulation of Compressible and Nearly-Incompressible Linear Elasticity on Unstructured Meshes

    Arash Mehraban1, Henry Tufo1, Stein Sture2, Richard Regueiro2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1283-1303, 2021, DOI:10.32604/cmes.2021.017476

    Abstract Higher-order displacement-based finite element methods are useful for simulating bending problems and potentially addressing mesh-locking associated with nearly-incompressible elasticity, yet are computationally expensive. To address the computational expense, the paper presents a matrix-free, displacement-based, higher-order, hexahedral finite element implementation of compressible and nearly-compressible (ν → 0.5) linear isotropic elasticity at small strain with p-multigrid preconditioning. The cost, solve time, and scalability of the implementation with respect to strain energy error are investigated for polynomial order p = 1, 2, 3, 4 for compressible elasticity, and p = 2, 3, 4 for nearly-incompressible elasticity, on different number More >

  • Open Access

    ARTICLE

    Initiation Mechanism of Transverse Cracks in Wind Turbine Blade Trailing Edge

    Jinghua Wang1, Leian Zhang1, Xuemei Huang1,*, Jinfeng Zhang2, Chengwei Yuan1

    Energy Engineering, Vol.119, No.1, pp. 407-418, 2022, DOI:10.32604/EE.2022.016439

    Abstract Transverse crack often occurs in the trailing edge region of the blade when subjected to the excessive edgewise fatigue load. In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge. The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory. The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test. Compared with More >

  • Open Access

    ARTICLE

    Polygonal Finite Element for Two-Dimensional Lid-Driven Cavity Flow

    T. Vu-Huu1, C. Le-Thanh2, H. Nguyen-Xuan3,4, M. Abdel-Wahab3,5,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4217-4239, 2022, DOI:10.32604/cmc.2022.020889

    Abstract This paper investigates a polygonal finite element (PFE) to solve a two-dimensional (2D) incompressible steady fluid problem in a cavity square. It is a well-known standard benchmark (i.e., lid-driven cavity flow)-to evaluate the numerical methods in solving fluid problems controlled by the Navier–Stokes (N–S) equation system. The approximation solutions provided in this research are based on our developed equal-order mixed PFE, called Pe1Pe1. It is an exciting development based on constructing the mixed scheme method of two equal-order discretisation spaces for both fluid pressure and velocity fields of flows and our proposed stabilisation technique. In this More >

  • Open Access

    ARTICLE

    Simulation of Non-Isothermal Turbulent Flows Through Circular Rings of Steel

    Abid. A. Memon1, M. Asif Memon1, Kaleemullah Bhatti1, Kamsing Nonlaopon2,*, Ilyas Khan3

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4341-4355, 2022, DOI:10.32604/cmc.2022.019407

    Abstract This article is intended to examine the fluid flow patterns and heat transfer in a rectangular channel embedded with three semi-circular cylinders comprised of steel at the boundaries. Such an organization is used to generate the heat exchangers with tube and shell because of the production of more turbulence due to zigzag path which is in favor of rapid heat transformation. Because of little maintenance, the heat exchanger of such type is extensively used. Here, we generate simulation of flow and heat transfer using non-isothermal flow interface in the Comsol multiphysics 5.4 which executes the… More >

  • Open Access

    ARTICLE

    Simulation of Lumbar Spinal Stenosis Using the Finite Element Method

    Din Prathumwan1, Inthira Chaiya2, Kamonchat Trachoo2,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3645-3657, 2021, DOI:10.32604/cmc.2021.018241

    Abstract Lumbar spine stenosis (LSS) is a narrowing of the spinal canal that results in pressure on the spinal nerves. This orthopedic disorder can cause severe pain and dysfunction. LSS is a common disabling problem amongst elderly people. In this paper, we developed a finite element model (FEM) to study the forces and the von Mises stress acting on the spine when people bend down. An artificial lumbar spine (L3) was generated from CT data by using the FEM, which is a powerful tool to study biomechanics. The proposed model is able to predict the effect… More >

  • Open Access

    ARTICLE

    Discontinuous-Galerkin-Based Analysis of Traffic Flow Model Connected with Multi-Agent Traffic Model

    Rina Okuyama1, Naoto Mitsume2, Hideki Fujii1, Hideaki Uchida1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 949-965, 2021, DOI:10.32604/cmes.2021.015773

    Abstract As the number of automobiles continues to increase year after year, the associated problem of traffic congestion has become a serious societal issue. Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks, and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies. Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations, macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities, and mesoscopic models and hybrid (or multiscale)… More >

Displaying 41-50 on page 5 of 286. Per Page