Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (112)
  • Open Access

    ARTICLE

    A Dynamic Adaptive Firefly Algorithm for Flexible Job Shop Scheduling

    K. Gayathri Devi*, R. S. Mishra, A. K. Madan

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 429-448, 2022, DOI:10.32604/iasc.2022.019330 - 03 September 2021

    Abstract An NP-hard problem like Flexible Job Shop Scheduling (FJSP) tends to be more complex and requires more computational effort to optimize the objectives with contradictory measures. This paper aims to address the FJSP problem with combined and contradictory objectives, like minimization of make-span, maximum workload, and total workload. This paper proposes ‘Hybrid Adaptive Firefly Algorithm’ (HAdFA), a new enhanced version of the classic Firefly Algorithm (FA) embedded with adaptive parameters to optimize the multi objectives concurrently. The proposed algorithm has adopted two adaptive strategies, i.e., an adaptive randomization parameter (α) and an effective heterogeneous update More >

  • Open Access

    ARTICLE

    Scheduling Flexible Flow Shop in Labeling Companies to Minimize the Makespan

    Chia-Nan Wang1, Hsien-Pin Hsu2, Hsin-Pin Fu3,*, Nguyen Ky Phuc Phan4, Van Thanh Nguyen5

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 17-36, 2022, DOI:10.32604/csse.2022.016992 - 26 August 2021

    Abstract In the competitive global marketplace, production scheduling plays a vital role in planning in manufacturing. Scheduling deals directly with the time to output products quickly and with a low production cost. This research examines case study of a Radio-Frequency Identification labeling department at Avery Dennison. The main objective of the company is to have a method that allows for the sequencing and scheduling of a set of jobs so it can be completed on or before the customer’s due date to minimize the number of late orders. This study analyzes the flexible flow shop scheduling More >

  • Open Access

    ARTICLE

    A Hybrid Immersed Boundary/Coarse-Graining Method for Modeling Inextensible Semi-Flexible Filaments in Thermally Fluctuating Fluids

    Magdalini Ntetsika, Panayiotis Papadopoulos*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1243-1258, 2021, DOI:10.32604/cmes.2021.017404 - 25 November 2021

    Abstract A new and computationally efficient version of the immersed boundary method, which is combined with the coarse-graining method, is introduced for modeling inextensible filaments immersed in low-Reynolds number flows. This is used to represent actin biopolymers, which are constituent elements of the cytoskeleton, a complex network-like structure that plays a fundamental role in shape morphology. An extension of the traditional immersed boundary method to include a stochastic stress tensor is also proposed in order to model the thermal fluctuations in the fluid at smaller scales. By way of validation, the response of a single, massless, More >

  • Open Access

    ARTICLE

    Thermally Induced Vibration Analysis of Flexible Beams Based on Isogeometric Analysis

    Jianchen Wu1, Yujie Guo1,*, Fangli Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1007-1031, 2021, DOI:10.32604/cmes.2021.016475 - 11 August 2021

    Abstract Spacecraft flexible appendages may experience thermally induced vibrations (TIV) under sudden heating loads, which in consequence will be unable to complete their intended missions. Isogeometric analysis (IGA) utilizes, in an isoparametric concept, the same high order and high continuity non-uniform rational B-splines (NURBS) to represent both the geometry and the physical field of the structure. Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved, IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli (EB) beam elements, therefore, does not need extra rotational degrees-of-freedom.… More >

  • Open Access

    ARTICLE

    A CFD Study on a Biomimetic Flexible Two-body System

    Jianxin Hu, Xin Huang, Yuzhen Jin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 597-614, 2021, DOI:10.32604/fdmp.2021.014249 - 29 April 2021

    Abstract By studying the characteristics of the flow field around a swimming fish, useful insights can be obtained into the superior swimming capabilities developed by nature over millions of years, in comparison to what can be achieved using the standard engineering principles traditionally employed in naval and ocean engineering. In the present study, the flow field related to a single joint fish model is simulated in the framework of a commercial computational fluid dynamics software (ANSYS Fluent 18.0). The principle of the anti-Kármán vortex street is analyzed and the relationship between the direction of the tail More >

  • Open Access

    ARTICLE

    Scheduling Optimization Modelling: A Case Study of a Woven Label Manufacturing Company

    Chia-Nan Wang1, Zhao-Hong Cheng2,*, Nguyen Ky Phuc Phan3, Van Thanh Nguyen4

    Computer Systems Science and Engineering, Vol.38, No.2, pp. 239-249, 2021, DOI:10.32604/csse.2021.016578 - 23 April 2021

    Abstract Production scheduling involves all activities of building production schedules, including coordinating and assigning activities to each person, group of people, or machine and arranging work orders in each workplace. Production scheduling must solve all problems such as minimizing customer wait time, storage costs, and production time; and effectively using the enterprise’s human resources. This paper studies the application of flexible job shop modelling on scheduling a woven labelling process. The labelling process includes several steps which are handled in different work-stations. Each workstation is also comprised of several identical parallel machines. In this study, job… More >

  • Open Access

    ARTICLE

    Blockchain-Based Flexible Double-Chain Architecture and Performance Optimization for Better Sustainability in Agriculture

    Luona Song1, Xiaojuan Wang1,*, Peng Wei1, Zikui Lu1, Xiaojun Wang2, Nicolas Merveille3

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1429-1446, 2021, DOI:10.32604/cmc.2021.016954 - 22 March 2021

    Abstract Blockchain is an emerging decentralized distributed technology that can cross the boundaries and guarantee safe and trustworthy value transfers between participants. Combining the blockchain technology with the Internet of Things (IoT) technology to enhance the transparency and sustainability of agricultural supply chains, has attracted researchers from both academia and industry. This paper reviews the latest applications of the blockchain and IoT technologies in the sustainable agricultural supply chain management and explores the design and implementation of a blockchain-based sustainable solution. By placing the sustainable agricultural supply chain management at its core, a blockchain-based framework is… More >

  • Open Access

    ARTICLE

    An Overview of the Miniaturization and Endurance for Wearable Devices

    Zhoulei Cao1, Qijun Wen1, Xiaoliang Wang1,*, Qing Yang1, Frank Jiang2

    Journal on Internet of Things, Vol.3, No.1, pp. 11-17, 2021, DOI:10.32604/jiot.2021.010404 - 16 March 2021

    Abstract The miniaturization and endurance of wearable devices have been the research direction for a long time. With the development of nanotechnology and the emergence of microelectronics products, people have explored many new strategies that may be applied to wearable devices. In this overview, we will summarize the recent research of wearable devices in these two directions, and summarize some available related technologies. More >

  • Open Access

    ARTICLE

    Flexible Nanopaper Composed of Wood-Derived Nanofibrillated Cellulose and Graphene Building Blocks

    Qing Li1, Ming Dai1, Xueren Qian1, Tian Liu1, Zhenbo Liu1, Yu Liu1, Ming Chen1, Wang He1, Suqing Zeng1, Yu Meng1, Chenchen Dai1, Jing Shen1, Yingtao Liu1, Wenshuai Chen1, Wenbo Liu1,*, Ping Lu2,*

    Journal of Renewable Materials, Vol.9, No.3, pp. 451-461, 2021, DOI:10.32604/jrm.2021.011655 - 14 January 2021

    Abstract Nanopaper has attracted considerable interest in the fields of films and paper research. However, the challenge of integrating the many advantages of nanopaper still remains. Herein, we developed a facile strategy to fabricate multifunctional nanocomposite paper (NGCP) composed of wood-derived nanofibrillated cellulose (NFC) and graphene as building blocks. NFC suspension was consisted of long and entangled NFCs (10–30 nm in width) and their aggregates. Before NGCP formation, NFC was chemically modified with a silane coupling agent to ensure that it could interact strongly with graphene in NGCP. The resulting NGCP samples were flexible and could… More >

  • Open Access

    ARTICLE

    Efficient Flexible M-Tree Bulk Loading Using FastMap and Space-Filling Curves

    Woong-Kee Loh*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1251-1267, 2021, DOI:10.32604/cmc.2020.012763 - 26 November 2020

    Abstract Many database applications currently deal with objects in a metric space. Examples of such objects include unstructured multimedia objects and points of interest (POIs) in a road network. The M-tree is a dynamic index structure that facilitates an efficient search for objects in a metric space. Studies have been conducted on the bulk loading of large datasets in an M-tree. However, because previous algorithms involve excessive distance computations and disk accesses, they perform poorly in terms of their index construction and search capability. This study proposes two efficient M-tree bulk loading algorithms. Our algorithms minimize More >

Displaying 71-80 on page 8 of 112. Per Page