Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access


    A Study of the Structural Evolution and Strength Damage Mechanisms of Pisha-Sandstone Cement Soil Modified with Fly Ash

    Jian Yang, Xiaoli Li*, Hui Wang, Kaiqiang Geng

    Journal of Renewable Materials, Vol.9, No.12, pp. 2241-2260, 2021, DOI:10.32604/jrm.2021.015565

    Abstract In the present study, in order to investigate the effects of fly ash on the structural evolution and strength damage mechanism of Pisha-sandstone cement soil, unconfined compressive strength tests of Pisha-sandstone cement soil with different fly ash content levels and various ages were carried out. The apparent morphology, microstructures, and chemical compositions of the samples were observed and analyzed using ultra-depth three-dimensional microscopy, scanning electron microscopy, and XRD methods. The results revealed that the unconfined compressive strength levels of Pisha-sandstone cement soil samples displayed increasing trends with the increases in fly ash content and age.… More > Graphic Abstract

    A Study of the Structural Evolution and Strength Damage Mechanisms of Pisha-Sandstone Cement Soil Modified with Fly Ash

  • Open Access


    Ancient Materials and Substitution Materials Used in Thai Historical Masonry Structure Preservation

    Natthanan Wonganan, Chainarong Athisakul*, Peerasit Mahasuwanchai, Weerachart Tangchirapat, Raktipong Sahamitmongkol, Sutat Leelataviwat

    Journal of Renewable Materials, Vol.9, No.2, pp. 179-204, 2021, DOI:10.32604/jrm.2021.013134

    Abstract The historical structures of Thailand are some of the most fascinating ancient sites in Asia. Their architectures reveal past cultures, traditions, knowledge, and expertise. Masonry materials are the major materials used to construct the historical structures in Thailand. One of the essential problem of Thai historical structure preservation is a shortage of engineering properties data for the structural stability assessment. Moreover, the in-depth engineering properties and the suitable substitution materials for Thai historical preservation are rarely found. Therefore, the engineering properties of the ancient masonry materials have to be explored together with the development of… More >

  • Open Access


    Mechanical Properties of Lime-Fly Ash-Sulphate Aluminum Cement Stabilized Loess

    Liang Jia, Chunxiang Li, Jian Guo*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1357-1373, 2020, DOI:10.32604/jrm.2020.012136

    Abstract Lime-fly ash stabilized loess has a poor early strength, which results in a later traffic opening time when it is used as road-base materials. Consideration of the significant early strength characteristics of sulphate aluminum cement (SAC), it is always added into the lime-fly ash mixtures to improve the early strength of stabilized loess. However, there is a scarcity of research on the mechanical behavior of lime-fly ash-SAC stabilized loess and there is a lack of quantitative evaluation of loess stabilized with binder materials. This research explored the effects of the amount of binder materials, curing… More >

  • Open Access


    One-Step Synthesis of Magnetic Zeolite from Zinc Slag and Circulating Fluidized Bed Fly Ash for Degradation of Dye Wastewater

    Zhichao Han, Yaojun Zhang*, Panyang He

    Journal of Renewable Materials, Vol.8, No.4, pp. 405-416, 2020, DOI:10.32604/jrm.2020.09351

    Abstract In this study, a magnetic P zeolite was directly synthesized by utilization of industrial solid wastes of zinc slag (ZS) and circulating fluidized bed fly ash (CFBFA) via one-step hydrothermal method. The effects of different CFBFA/ZS ratios and hydrothermal times on the as-synthesized zeolite were investigated. The X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) results indicated that the magnetic P zeolite possessed well-defined crystals and superparamagnetism. The as-prepared zeolite was employed as a Fenton-like solid catalyst for degradation of direct green B dye wastewater. It was discovered that the magnetic P zeolite took the More >

  • Open Access

    Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition

    Wojciech Kubissa1, Roman Jaskulski1, Pavel Reiterman2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 53-61, 2017, DOI:10.7569/JRM.2017.634103

    Abstract This article deals with an experimental study concerning the development of concrete mixtures with significant ecological benefits. The studied concrete mixtures were based on blast-furnace cement, with an additional application of supplementary cementitious materials—fly ash, metakaolin, and silica fume and fluidized fly ash. Coarse aggregate in the form of crushed concrete was applied for all studied concrete mixtures. The experimental program was primarily focused on the assessment of the durability properties of the studied mixtures in terms of mechanical tests, absorption tests, chloride migration coefficient tests, water penetration tests, and accelerated carbonation depth tests. The More >

  • Open Access


    An Experimental Study on Properties of High-Volume Slag and Fly Ash Cements Incorporating Calcined Oyster Shells Waste

    Ali Naqi, Jeong Gook Jang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 5-5, 2019, DOI:10.32604/icces.2019.05299

    Abstract Concrete construction industry is facing a sustainability issue for a variety of reasons. First, it consumes enormous amounts of natural resources. Second, the primary content in the binder of concrete is Portland cement, which production is one of the major sources of greenhouse gas emissions leading to global warming. Third, durability concerns of concrete structures. To overcome these issues cement is substituted with high volumes of more sustainable cementitious materials such as slag and fly ash. Slag is a by-product of an iron blast furnace while fly ash is a by-product of coal-fired power plants.… More >

Displaying 21-30 on page 3 of 26. Per Page