Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning

    Kemahyanto Exaudi1,2, Deris Stiawan3,*, Bhakti Yudho Suprapto1, Hanif Fakhrurroja4, Mohd. Yazid Idris5, Tami A. Alghamdi6, Rahmat Budiarto6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.069377 - 10 November 2025

    Abstract Sudden wildfires cause significant global ecological damage. While satellite imagery has advanced early fire detection and mitigation, image-based systems face limitations including high false alarm rates, visual obstructions, and substantial computational demands, especially in complex forest terrains. To address these challenges, this study proposes a novel forest fire detection model utilizing audio classification and machine learning. We developed an audio-based pipeline using real-world environmental sound recordings. Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network (CNN), enabling the capture of distinctive fire acoustic signatures (e.g., crackling, roaring) that are minimally impacted by… More >

  • Open Access

    ARTICLE

    YOLO-LFD: A Lightweight and Fast Model for Forest Fire Detection

    Honglin Wang1, Yangyang Zhang2,*, Cheng Zhu3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3399-3417, 2025, DOI:10.32604/cmc.2024.058932 - 17 February 2025

    Abstract Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction… More >

  • Open Access

    ARTICLE

    Fusion-Based Deep Learning Model for Automated Forest Fire Detection

    Mesfer Al Duhayyim1, Majdy M. Eltahir2, Ola Abdelgney Omer Ali3, Amani Abdulrahman Albraikan4, Fahd N. Al-Wesabi2, Anwer Mustafa Hilal5,*, Manar Ahmed Hamza5, Mohammed Rizwanullah5

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1355-1371, 2023, DOI:10.32604/cmc.2023.024198 - 31 October 2023

    Abstract Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development, regulatory measures, and their implementation elevating the environment. Large-scale forest fire is considered a major harmful hazard that affects climate change and life over the globe. Therefore, the early identification of forest fires using automated tools is essential to avoid the spread of fire to a large extent. Therefore, this paper focuses on the design of automated forest fire detection using a fusion-based deep learning (AFFD-FDL) model for environmental monitoring. The… More >

  • Open Access

    ARTICLE

    Unmanned Aerial Vehicle Assisted Forest Fire Detection Using Deep Convolutional Neural Network

    A. K. Z Rasel Rahman1, S. M. Nabil Sakif1, Niloy Sikder1, Mehedi Masud2, Hanan Aljuaid3, Anupam Kumar Bairagi1,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3259-3277, 2023, DOI:10.32604/iasc.2023.030142 - 17 August 2022

    Abstract Disasters may occur at any time and place without little to no presage in advance. With the development of surveillance and forecasting systems, it is now possible to forebode the most life-threatening and formidable disasters. However, forest fires are among the ones that are still hard to anticipate beforehand, and the technologies to detect and plot their possible courses are still in development. Unmanned Aerial Vehicle (UAV) image-based fire detection systems can be a viable solution to this problem. However, these automatic systems use advanced deep learning and image processing algorithms at their core and… More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Enabled Wild Forest Fire Detection System

    Ahmed S. Almasoud*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1485-1498, 2023, DOI:10.32604/csse.2023.025190 - 15 June 2022

    Abstract The latest advancements in computer vision and deep learning (DL) techniques pave the way to design novel tools for the detection and monitoring of forest fires. In this view, this paper presents an intelligent wild forest fire detection and alarming system using deep learning (IWFFDA-DL) model. The proposed IWFFDA-DL technique aims to identify forest fires at earlier stages through integrated sensors. The proposed IWFFDA-DL system includes an Integrated sensor system (ISS) combining an array of sensors that acts as the major input source that helps to forecast the fire. Then, the attention based convolution neural More >

  • Open Access

    ARTICLE

    An Energy-Efficient Wireless Power Transmission-Based Forest Fire Detection System

    Arwa A. Mashat, Niayesh Gharaei*, Aliaa M. Alabdali

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 441-459, 2022, DOI:10.32604/cmc.2022.024131 - 24 February 2022

    Abstract Compared with the traditional techniques of forest fires detection, wireless sensor network (WSN) is a very promising green technology in detecting efficiently the wildfires. However, the power constraint of sensor nodes is one of the main design limitations of WSNs, which leads to limited operation time of nodes and late fire detection. In the past years, wireless power transfer (WPT) technology has been known as a proper solution to prolong the operation time of sensor nodes. In WPT-based mechanisms, wireless mobile chargers (WMC) are utilized to recharge the batteries of sensor nodes wirelessly. Likewise, the… More >

Displaying 1-10 on page 1 of 6. Per Page