Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (493)
  • Open Access

    ARTICLE

    A Computer-Aided Tuning Method for Microwave Filters by Combing T-S Fuzzy Neural Networks and Improved Space Mapping

    Shengbiao Wu1,2,3, Weihua Cao1,3,*, Can Liu1,3, Min Wu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.3, pp. 433-453, 2018, DOI: 10.31614/cmes.2018.03309

    Abstract A computer-aided tuning method that combines T-S fuzzy neural network (T-S FNN) and offers improved space mapping (SM) is presented in this study. This method consists of three main aspects. First, the coupling matrix is effectively extracted under the influence of phase shift and cavity loss after the initial tuning. Second, the surrogate model is realized by using a T-S FNN based on subspace clustering. Third, the mapping relationship between the actual and the surrogate models is established by the improved space mapping algorithm, and the optimal position of the tuning screws are found by updating the input and output… More >

  • Open Access

    ARTICLE

    Soil Microbial Dynamics Modeling in Fluctuating Ecological Situations by Using Subtractive Clustering and Fuzzy Rule-Based Inference Systems

    Sunil Kr. Jha1, Zulfiqar Ahmad2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.4, pp. 443-459, 2017, DOI:10.3970/cmes.2017.113.443

    Abstract Microbial population and enzyme activities are the significant indicators of soil strength. Soil microbial dynamics characterize microbial population and enzyme activities. The present study explores the development of efficient predictive modeling systems for the estimation of specific soil microbial dynamics, like rock phosphate solubilization, bacterial population, and ACC-deaminase activity. More specifically, optimized subtractive clustering (SC) and Wang and Mendel's (WM) fuzzy inference systems (FIS) have been implemented with the objective to achieve the best estimation accuracy of microbial dynamics. Experimental measurements were performed using controlled pot experiment using minimal salt media with rock phosphate as sole carbon source inoculated with… More >

  • Open Access

    ARTICLE

    Solution of Fully Fuzzy System of Linear Equations by Linear Programming Approach

    Diptiranjan Behera1,2, Hong-Zhong Huang1, S. Chakraverty3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.2, pp. 67-87, 2015, DOI:10.3970/cmes.2015.108.067

    Abstract Fuzzy systems of linear equations play a vital role in various applications of engineering, science and finance problems. This paper proposes a new method for solving Fully Fuzzy System of Linear Equations (FFSLE) using the linear programming problem approach. There is no restriction on the elements of coefficient matrix. The proposed method is able to solve the system, when the elements of the fuzzy unknown vector are both non-negative and non-positive. Triangular convex normalized fuzzy sets are considered for the present analysis. Known example problems are solved and compared with the results of existing methods to illustrate the efficacy and… More >

  • Open Access

    ARTICLE

    A New Approach to a Fuzzy Time-Optimal Control Problem

    Ş. Emrah Amrahov1, N. A. Gasilov2, A. G. Fatullayev2

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.5, pp. 351-369, 2014, DOI:10.3970/cmes.2014.099.351

    Abstract In this paper, we present a new approach to a time-optimal control problem with uncertainties. The dynamics of the controlled object, expressed by a linear system of differential equations, is assumed to be crisp, while the initial and final phase states are fuzzy sets. We interpret the problem as a set of crisp problems. We introduce a new notion of fuzzy optimal time and transform its calculation to two classical time-optimal control problems with initial and final sets. We examine the proposed approach on an example which is a problem of fuzzy control of mathematical pendulum. More >

  • Open Access

    ARTICLE

    Enrichment Procedures for Soft Clusters: A Statistical Test and its Applications

    R.D. Phillips1, M.S. Hossain1, L.T. Watson1,2, R.H. Wynne3, Naren Ramakrishnan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.2, pp. 175-197, 2014, DOI:10.3970/cmes.2014.097.175

    Abstract Clusters, typically mined by modeling locality of attribute spaces, are often evaluated for their ability to demonstrate ‘enrichment’ of categorical features. A cluster enrichment procedure evaluates the membership of a cluster for significant representation in predefined categories of interest. While classical enrichment procedures assume a hard clustering definition, this paper introduces a new statistical test that computes enrichments for soft clusters. Application of the new test to several scientific datasets is given. More >

  • Open Access

    ARTICLE

    Non Probabilistic Solution of Fuzzy Fractional Fornberg-Whitham Equation

    S. Chakraverty1,2, Smita Tapaswini1

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.2, pp. 71-90, 2014, DOI:10.3970/cmes.2014.103.071

    Abstract Fractional Fornberg-Whitham equation has a vast application in physics. There exist various investigations for the above problem by considering the variables and parameters as crisp/exact. In practice, we may not have these parameters exactly but those may be known in some uncertain form. In the present paper, these uncertainties are taken as interval/fuzzy and the authors proposed here a new method viz. that of the double parametric form of fuzzy numbers to handle the uncertain fractional Fornberg-Whitham equation. Using the single parametric form of fuzzy numbers, original fuzzy fractional Fornberg-Whitham equation is converted first to an interval based fuzzy differential… More >

  • Open Access

    ARTICLE

    Fuzzy Analysis of Structures with Imprecisely Defined Properties

    Diptiranjan Behera1, Snehashish Chakraverty2

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.5, pp. 317-337, 2013, DOI:10.3970/cmes.2013.096.317

    Abstract This paper targets to analyse the static response of structures with fuzzy parameters using fuzzy finite element method. Here the material, geometrical properties and external load applied to the structures are taken as uncertain. Uncertainties presents in the parameters are modelled through convex normalised fuzzy sets. Fuzzy finite element method converts the problem into fuzzy or fully fuzzy system of linear equations for static analysis. As such here, two new methods are proposed to solve the fuzzy and fully fuzzy system of linear equations. Numerical examples for structures with uncertain system parameters that are in term of triangular fuzzy number… More >

  • Open Access

    ARTICLE

    Universal Reliability Method for Structural Models with Both Random and Fuzzy Variables

    Zichun Yang1,2,3, Kunfeng Li1,4, Qi Cai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.2, pp. 143-171, 2013, DOI:10.3970/cmes.2013.095.143

    Abstract The conventional probabilistic reliability model for structures is based on the “probability assumption” and “binary-state assumption”. These assumptions are often offset the reality of practical engineering and lead to a wrong conclusion. In fact, besides randomness, fuzziness which is different from randomness in nature is also a prevalent uncertainty factor and plays an important role in structural reliability assessment. In this paper, a novel structural reliability model with random variables and fuzzy variables is established by using the fuzzy set theory, possibility theory and probability measure for fuzzy events, based on the “mixed probability and possibility assumption” and “fuzzy state… More >

  • Open Access

    ARTICLE

    Application of Geometric Approach for Fuzzy Linear Systems to a Fuzzy Input-Output Analysis

    Nizami Gasilov1, Sahin Emrah Amrahov2 , Afet Golayoglu Fatullayev ˇ 1, Halil Ibrahim Karaka¸s1, Ömer Akın3

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.2, pp. 93-106, 2012, DOI:10.3970/cmes.2012.088.093

    Abstract Uncertainties in some parameters of problems of Leontief input-output analysis lead naturally to fuzzy linear systems. In this work, we consider input-output model, where the technology matrix is crisp and the vector of final outputs is fuzzy. The model is expressed by a fuzzy linear system with crisp matrix and with fuzzy right-hand side vector. We apply a geometric method for solving the system. The method finds the solution in the form of a fuzzy set of vectors. The solution set is shown to be a parallelepiped in coordinate space and is expressed by an explicit formula. The features of… More >

  • Open Access

    ARTICLE

    Strong Solutions of the Fuzzy Linear Systems

    Şahin Emrah Amrahov1, Iman N. Askerzade1

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.3&4, pp. 207-216, 2011, DOI:10.3970/cmes.2011.076.207

    Abstract We consider a fuzzy linear system with crisp coefficient matrix and with an arbitrary fuzzy number in parametric form on the right-hand side. It is known that the well-known existence and uniqueness theorem of a strong fuzzy solution is equivalent to the following: The coefficient matrix is the product of a permutation matrix and a diagonal matrix. This means that this theorem can be applicable only for a special form of linear systems, namely, only when the system consists of equations, each of which has exactly one variable. We prove an existence and uniqueness theorem, which can be use on… More >

Displaying 471-480 on page 48 of 493. Per Page