Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    ARTICLE

    A Hybrid Model of Transfer Learning and Convolutional Neural Networks for Accurate Coffee Leaf Miner (CLM) Classification

    Nameer Baht1,*, Enrique Domínguez1,2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4441-4455, 2025, DOI:10.32604/cmc.2025.069528 - 23 October 2025

    Abstract Coffee is an important agricultural commodity, and its production is threatened by various diseases. It is also a source of concern for coffee-exporting countries, which is causing them to rethink their strategies for the future. Maintaining crop production requires early diagnosis. Notably, Coffee Leaf Miner (CLM) Machine learning (ML) offers promising tools for automated disease detection. Early detection of CLM is crucial for minimising yield losses. However, this study explores the effectiveness of using Convolutional Neural Networks (CNNs) with transfer learning algorithms ResNet50, DenseNet121, MobileNet, Inception, and hybrid VGG19 for classifying coffee leaf images as… More >

  • Open Access

    ARTICLE

    ScRNA-seq and Experimental Analyses Unveil Lrg1 Regulating the Oxidative Phosphorylation Pathway to Affect Neutrophil Accumulation after Cerebral Ischemia-Reperfusion

    Luyao Jiang1,#, Longsheng Fu2,#, Shaofeng Xiong2,3, Guosheng Cao4, Yanqin Mei2,3, Yaoqi Wu2, Jin Chen1,*, Yanni LV2,5,6,*

    BIOCELL, Vol.49, No.9, pp. 1749-1769, 2025, DOI:10.32604/biocell.2025.068507 - 25 September 2025

    Abstract Background: After ischemic stroke, neutrophils hyperactivate, increasing in number and worsening inflammation, causing neural damage. Prior scRNA-seq showed Lrg1 modulates cells subsentence to cerebral ischemia-reperfusion injury, but its mechanism in regulating neutrophil accumulation/differentiation post-injury is unclear. Methods: Lrg1 knockout impact on neutrophil accumulation was assessed via immunofluorescence and western blot. Three-dimensional reconstruction of immunofluorescent staining analyzed cell-cell interactions among neutrophils and microglia. scRNA-seq of WT and Lrg1-/- mice from GSE245386 and GSE279462 was conducted. Each group conducted oxidative phosphorylation scoring via Gene Set Enrichment Analysis (GSEA), while Metascape was employed to perform GO and KEGG enrichment… More > Graphic Abstract

    ScRNA-seq and Experimental Analyses Unveil Lrg1 Regulating the Oxidative Phosphorylation Pathway to Affect Neutrophil Accumulation after Cerebral Ischemia-Reperfusion

  • Open Access

    ARTICLE

    Intelligent Concrete Defect Identification Using an Attention-Enhanced VGG16-U-Net

    Caiping Huang*, Hui Li, Zihang Yu

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1287-1304, 2025, DOI:10.32604/sdhm.2025.065930 - 05 September 2025

    Abstract Semantic segmentation of concrete bridge defect images frequently encounters challenges due to insufficient precision and the limited computational capabilities of mobile devices, thereby considerably affecting the reliability of bridge defect monitoring and health assessment. To tackle these issues, a concrete defects dataset (including spalling, crack, and exposed steel rebar) was curated and multiple semantic segmentation models were developed. In these models, a deep convolutional network or a lightweight convolutional network were employed as the backbone feature extraction networks, with different loss functions configured and various attention mechanism modules introduced for conducting multi-angle comparative research. The… More >

  • Open Access

    ARTICLE

    Optimizing CNN Architectures for Face Liveness Detection: Performance, Efficiency, and Generalization across Datasets

    Smita Khairnar1,2, Shilpa Gite1,3,*, Biswajeet Pradhan4,*, Sudeep D. Thepade2,5, Abdullah Alamri6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3677-3707, 2025, DOI:10.32604/cmes.2025.058855 - 30 June 2025

    Abstract Face liveness detection is essential for securing biometric authentication systems against spoofing attacks, including printed photos, replay videos, and 3D masks. This study systematically evaluates pre-trained CNN models— DenseNet201, VGG16, InceptionV3, ResNet50, VGG19, MobileNetV2, Xception, and InceptionResNetV2—leveraging transfer learning and fine-tuning to enhance liveness detection performance. The models were trained and tested on NUAA and Replay-Attack datasets, with cross-dataset generalization validated on SiW-MV2 to assess real-world adaptability. Performance was evaluated using accuracy, precision, recall, FAR, FRR, HTER, and specialized spoof detection metrics (APCER, NPCER, ACER). Fine-tuning significantly improved detection accuracy, with DenseNet201 achieving the highest… More > Graphic Abstract

    Optimizing CNN Architectures for Face Liveness Detection: Performance, Efficiency, and Generalization across Datasets

  • Open Access

    ARTICLE

    A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4161-4179, 2025, DOI:10.32604/cmc.2025.061497 - 06 March 2025

    Abstract A healthy brain is vital to every person since the brain controls every movement and emotion. Sometimes, some brain cells grow unexpectedly to be uncontrollable and cancerous. These cancerous cells are called brain tumors. For diagnosed patients, their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans. Nowadays, Physicians and radiologists rely on Magnetic Resonance Imaging (MRI) pictures for their clinical evaluations of brain tumors. These evaluations are time-consuming, expensive, and require expertise with high skills to provide an accurate diagnosis. Scholars and industrials have recently partnered to implement… More >

  • Open Access

    ARTICLE

    Deep Convolution Neural Networks for Image-Based Android Malware Classification

    Amel Ksibi1,*, Mohammed Zakariah2, Latifah Almuqren1, Ala Saleh Alluhaidan1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4093-4116, 2025, DOI:10.32604/cmc.2025.059615 - 06 March 2025

    Abstract The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches, such as signature-based detection, are no longer effective due to the continuously advancing level of sophistication. To resolve this problem, efficient and flexible malware detection tools are needed. This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations. Moreover, the dataset used in this study is the CIC-AndMal2017, which contains 20,000 instances of network traffic across five distinct malware categories: a.… More >

  • Open Access

    ARTICLE

    Diagnosing Retinal Eye Diseases: A Novel Transfer Learning Approach

    Mohammed Salih Ahmed1, Atta Rahman2,*, Yahya Alhabboub1, Khalid Alzahrani1, Hassan Baragbah1, Basel Altaha1, Hussein Alkatout1, Sardar Asad Ali Biabani3,4, Rashad Ahmed5, Aghiad Bakry2

    Intelligent Automation & Soft Computing, Vol.40, pp. 149-175, 2025, DOI:10.32604/iasc.2025.059080 - 12 February 2025

    Abstract This study rigorously evaluates the potential of transfer learning in diagnosing retinal eye diseases using advanced models such as YOLOv8, Xception, ConvNeXtTiny, and VGG16. All models were trained on the esteemed RFMiD dataset, which includes images classified into six critical categories: Diabetic Retinopathy (DR), Macular Hole (MH), Diabetic Neuropathy (DN), Optic Disc Changes (ODC), Tesselated Fundus (TSLN), and normal cases. The research emphasizes enhancing model performance by prioritizing recall metrics, a crucial strategy aimed at minimizing false negatives in medical diagnostics. To address the challenge of imbalanced data, we implemented effective preprocessing techniques, including cropping,… More >

  • Open Access

    ARTICLE

    Exploring the therapeutic potential of precision T-Cell Receptors (TCRs) in targeting KRAS G12D cancer through in vitro development

    WEITAO ZHENG1, DONG JIANG2, SONGEN CHEN1, MEILING WU1, BAOQI YAN2, JIAHUI ZHAI2, YUNQIANG SHI2, BIN XIE1, XINGWANG XIE2, KANGHONG HU1,*, WENXUE MA3,*

    Oncology Research, Vol.32, No.12, pp. 1837-1850, 2024, DOI:10.32604/or.2024.056565 - 13 November 2024

    Abstract Objectives: The Kirsten rat sarcoma virus (KRAS) G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions. This study aims to explore innovative approaches in T cell receptor (TCR) engineering and characterization to target the KRAS G12D7-16 mutation, providing potential strategies for overcoming this therapeutic challenge. Methods: In this innovative study, we engineered and characterized two T cell receptors (TCRs), KDA11-01 and KDA11-02 with high affinity for the KRAS G12D7-16 mutation. These TCRs were isolated from tumor-infiltrating lymphocytes (TILs) derived from tumor tissues of patients More >

  • Open Access

    ARTICLE

    Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI

    Saad Akbar1,2, Humera Azam1, Sulaiman Sulmi Almutairi3,*, Omar Alqahtani4, Habib Shah4, Aliya Aleryani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1075-1104, 2024, DOI:10.32604/cmc.2024.050913 - 18 July 2024

    Abstract The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools. In this article, a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19, pneumonia, and normal conditions in chest X-ray images (CXIs) is proposed coupled with Explainable Artificial Intelligence (XAI). Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3, VGG16, and VGG19 that excel in the task of feature extraction. The methodology is further enhanced by the inclusion of the t-SNE (t-Distributed… More >

  • Open Access

    ARTICLE

    Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model

    Awais Khan1, Chomyong Kim2, Jung-Yeon Kim2, Ahsan Aziz1, Yunyoung Nam3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1729-1755, 2024, DOI:10.32604/cmes.2024.049618 - 20 May 2024

    Abstract Sleep posture surveillance is crucial for patient comfort, yet current systems face difficulties in providing comprehensive studies due to the obstruction caused by blankets. Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns. Consequently, this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification, thereby enhancing the analysis of body position and comfort. This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras, which depict six commonly adopted postures: supine,… More > Graphic Abstract

    Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model

Displaying 1-10 on page 1 of 56. Per Page