Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (490)
  • Open Access

    ARTICLE

    Chemical characterization and sensory evaluation of new sweets made with Geoffroea decorticans fruits, Fabaceae

    Orrabalis C1,2, H Gorostegui1,2, E Calandri1, C Guzmán1

    Phyton-International Journal of Experimental Botany, Vol.83, pp. 117-125, 2014, DOI:10.32604/phyton.2014.83.117

    Abstract We evaluated the possibility of making jam (product A) and simile sweet potato jam (product B) from the edible pulp of the fruits of Geoffroea decorticans. The first step was the chemical characterization of the flour (pulp) highlighting their carbohydrate (85.6%), protein (9.4%) and mineral (4.2%) concentrations. Sucrose (29.5%), glucose (3.80%) and fructose (5.30%) levels were quantified using gas chromatography. Contents of protein (5.7%), minerals (3.4%), dietary fiber (0.97%), sucrose (46.8%), glucose (1.9%) and fructose (2.4%) were very good in jam. The simile sweet potato jam had low calories (140 Kcal/100g) and provided protein (4.6%). During More >

  • Open Access

    ARTICLE

    Nonlinear Panel Flutter Analysis Based on an Improved CFD/CSD Coupled Procedure

    Xiaomin An1, Min Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.6, pp. 601-629, 2014, DOI:10.3970/cmes.2014.098.601

    Abstract Nonlinear aeroelasticity, caused by the interaction between nonlinear fluid and geometrically nonlinear structure, is studied by an improved CFD and CSD coupled program. An AUSMpw+ flux splitting scheme, combined with an implicit time marching technology and geometric conservation law, is utilized to solve unsteady aerodynamic pressure; The finite element co-rotational theory is applied to model geometrically nonlinear two-dimensional and three-dimensional panels, and a predictor-corrector program with an approximately energy conservation is developed to obtain nonlinear structure response. The two solvers are connected by Farhat’s second order loosely coupled method and the aerodynamic loads and structural More >

  • Open Access

    ARTICLE

    Geometrical Modeling of Cell Division and Cell Remodeling Based on Voronoi Tessellation Method

    Liqiang Lin1, Xianqiao Wang2, Xiaowei Zeng1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 203-220, 2014, DOI:10.3970/cmes.2014.098.203

    Abstract The Voronoi tessellation is employed to describe cellular patterns and to simulate cell division and cell remodeling in epithelial tissue. First, Halton sequence is utilized to generate the random generators of Voronoi cell points. The centroidal Voronoi cell center is obtained by probabilistic Lloyd's method and polygonal structure of cell distribution is modeled. Based on the polygonal shape of cells, the instantaneous mechanism of cell division is applied to simulate the cell proliferation and remodeling. Four kinds of single-cell division algorithms are designed with the consideration of cleavage angle. From these simulations, we find that… More >

  • Open Access

    ARTICLE

    Patient-Specific Modeling in Urogynecology: A Meshfree Approach

    J.B. Alford1, D.C. Simkins1, R.A. Rembert1, L. Hoyte, MD2

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 129-149, 2014, DOI:10.3970/cmes.2014.098.129

    Abstract Mechanical deformation of tissues in the female pelvic floor is believed to be central to understanding a number of important aspects of women’s health, particularly pelvic floor dysfunction. A 2008 study of US women reported the prevalence of pelvic floor disorders in the 20 and 39 years range as 9.7% with the prevalence increasing with age until it reaches roughly 50% in the 80 and older age group [Nygaard, Barber, Burgio, and et al (2008)]. Clinical observation indicates a strong correlation between problems such as pelvic organ prolapse/urinary incontinence and vaginal childbirth. It is thought… More >

  • Open Access

    ARTICLE

    Geometrically Nonlinear Inelastic Analysis of Timoshenko Beams on Inelastic Foundation

    A.E. Kampitsis1, E.J. Sapountzakis2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.6, pp. 367-409, 2014, DOI:10.3970/cmes.2014.103.367

    Abstract In this paper a Boundary Element Method (BEM) is developed for the geometrically nonlinear inelastic analysis of Timoshenko beams of arbitrary doubly symmetric simply or multiply connected constant cross-section, resting on inelastic tensionless Winkler foundation. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse loading and bending moments in both directions as well as to axial loading, while its edges are subjected to the most general boundary conditions. To account for shear deformations, the concept of shear deformation coefficients is used. A displacement based formulation is developed and inelastic redistribution More >

  • Open Access

    ARTICLE

    An Improved Isogeometric Boundary Element Method Approach in Two Dimensional Elastostatics

    Vincenzo Mallardo1, Eugenio Ruocco2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 373-391, 2014, DOI:10.3970/cmes.2014.102.373

    Abstract The NURBS based isogeometric analysis offers a novel integration between the CAD and the numerical structural analysis codes due to its superior capacity to describe accurately any complex geometry. Since it was proposed in 2005, the approach has attracted rapidly growing research interests and wide applications in the Finite Element context. Only recently, in 2012, it was successfully tested together with the Boundary Element Method. The combination of the isogeometric approach and the Boundary Element Method is efficient since both the NURBS geometrical representation and the Boundary Element Method deal with quantities entirely on the More >

  • Open Access

    ARTICLE

    A Systematic Review of Algorithms with Linear-time Behaviour to Generate Delaunay and Voronoi Tessellations

    S,erson L. Gonzaga de Oliveira1, Jéssica Renata Nogueira1, João Manuel R. S. Tavares2

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.1, pp. 31-57, 2014, DOI:10.3970/cmes.2014.100.031

    Abstract Triangulations and tetrahedrizations are important geometrical discretization procedures applied to several areas, such as the reconstruction of surfaces and data visualization. Delaunay and Voronoi tessellations are discretization structures of domains with desirable geometrical properties. In this work, a systematic review of algorithms with linear-time behaviour to generate 2D/3D Delaunay and/or Voronoi tessellations is presented. More >

  • Open Access

    ARTICLE

    Normal Stresses in an Ifnitite Elastic Body with a Locally Curved and Hollow Nanofiber

    K. S. Alan1

    CMC-Computers, Materials & Continua, Vol.44, No.1, pp. 1-21, 2014, DOI:10.3970/cmc.2014.044.001

    Abstract In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically nonlinear exact equations of the theory of elasticity, the method developed for the determination of the stress distribution in the nanocomposites with unidirectional locally curved and hollow nanofibers is used to investigate the normal stresses acting along the nanofibers. Furthermore, it is assumed that the body is loaded at infinity by uniformly distributed normal forces which act along the nanofibers and the crosssection of the nanofibers and normal to its axial line, is a circle of constant radius along More >

  • Open Access

    ARTICLE

    From Geometric Transformations to Auxetic Metamaterials

    Ligia Munteanu1, Veturia Chiroiu1, Viorel Şerban2

    CMC-Computers, Materials & Continua, Vol.42, No.3, pp. 175-204, 2014, DOI:10.3970/cmc.2014.042.175

    Abstract The paper introduces a new alternative towards fabrication of auxetic metamaterials (materials with negative Poisson’s ratio) controlled by geometric transformations. These transformations are derived from the theory of small (infinitesimal) elastic deformation superimposed on finite elastic deformations. By using this theory, a cylindrical region filled with initial deformed foam is transformed through deformation into a cylindrical shell region filled with auxetic metamaterial. As an example, the realization of the seismic cloak device becomes a practical possibility. More >

  • Open Access

    ARTICLE

    AN EXPERIMENTAL STUDY OF THE EFFECT OF PRESSURE INLET GAS ON A COUNTER-FLOW VORTEX TUBE

    Mahyar Kargaran*, Mahmood Farzaneh-Gord

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-6, 2013, DOI:10.5098/hmt.v4.1.3007

    Abstract Vortex tube is a simple device which separate an inlet gas with a proper pressure into hot and cold flows .This device is well-suited for generating cooling load gas because it provides the cold gas without using any refrigerants . Many research works has been carried out in order to identify the factors which contribute to Vortex tube performance. Here, an experimental study has been made to determine the effect of geometrical (length of vortex tube) and thermo-physical (pressure) parameters on vortex tube performance and air also used as a working fluid. More >

Displaying 381-390 on page 39 of 490. Per Page