Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing

    Mohd Anjum1, Naoufel Kraiem2, Hong Min3,*, Ashit Kumar Dutta4, Yousef Ibrahim Daradkeh5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 357-384, 2025, DOI:10.32604/cmes.2024.057889 - 17 December 2024

    Abstract Machine learning (ML) is increasingly applied for medical image processing with appropriate learning paradigms. These applications include analyzing images of various organs, such as the brain, lung, eye, etc., to identify specific flaws/diseases for diagnosis. The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification. Most of the extracted image features are irrelevant and lead to an increase in computation time. Therefore, this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features. This process… More >

  • Open Access

    ARTICLE

    A Fusion Model for Personalized Adaptive Multi-Product Recommendation System Using Transfer Learning and Bi-GRU

    Buchi Reddy Ramakantha Reddy, Ramasamy Lokesh Kumar*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4081-4107, 2024, DOI:10.32604/cmc.2024.057071 - 19 December 2024

    Abstract Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products, leading to suboptimal user experiences. To address this, our study presents a Personalized Adaptive Multi-Product Recommendation System (PAMR) leveraging transfer learning and Bi-GRU (Bidirectional Gated Recurrent Units). Using a large dataset of user reviews from Amazon and Flipkart, we employ transfer learning with pre-trained models (AlexNet, GoogleNet, ResNet-50) to extract high-level attributes from product data, ensuring effective feature representation even with limited data. Bi-GRU captures both spatial and sequential dependencies in user-item interactions. The innovation of this study lies… More >

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries

    Tao Yan1, Javed Rashid2,3, Muhammad Shoaib Saleem3,4, Sajjad Ahmad4, Muhammad Faheem5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2685-2708, 2024, DOI:10.32604/cmc.2024.058186 - 18 November 2024

    Abstract Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and… More >

  • Open Access

    ARTICLE

    An Efficient Long Short-Term Memory and Gated Recurrent Unit Based Smart Vessel Trajectory Prediction Using Automatic Identification System Data

    Umar Zaman1, Junaid Khan2, Eunkyu Lee1,3, Sajjad Hussain4, Awatef Salim Balobaid5, Rua Yahya Aburasain5, Kyungsup Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1789-1808, 2024, DOI:10.32604/cmc.2024.056222 - 15 October 2024

    Abstract Maritime transportation, a cornerstone of global trade, faces increasing safety challenges due to growing sea traffic volumes. This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System (AIS) data and advanced deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (DBLSTM), Simple Recurrent Neural Network (SimpleRNN), and Kalman Filtering. The research implemented rigorous AIS data preprocessing, encompassing record deduplication, noise elimination, stationary simplification, and removal of insignificant trajectories. Models were trained using key navigational parameters: latitude, longitude, speed, and heading. Spatiotemporal aware processing through trajectory segmentation… More >

  • Open Access

    ARTICLE

    GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification

    Mohammad Shoab*, Loiy Alsbatin*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.053721 - 15 October 2024

    Abstract In recent years, machine learning (ML) and deep learning (DL) have significantly advanced intrusion detection systems, effectively addressing potential malicious attacks across networks. This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things (IoT) environment, leveraging the NSL-KDD dataset. To achieve high accuracy, the authors used the feature extraction technique in combination with an auto-encoder, integrated with a gated recurrent unit (GRU). Therefore, the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization (PSO), and PSO has been employed for training the features. The More >

  • Open Access

    ARTICLE

    Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias

    Batyrkhan Omarov1,2,*, Meirzhan Baikuvekov1, Daniyar Sultan1, Nurzhan Mukazhanov3, Madina Suleimenova2, Maigul Zhekambayeva3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 341-359, 2024, DOI:10.32604/cmc.2024.052437 - 18 July 2024

    Abstract This research introduces an innovative ensemble approach, combining Deep Residual Networks (ResNets) and Bidirectional Gated Recurrent Units (BiGRU), augmented with an Attention Mechanism, for the classification of heart arrhythmias. The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency. The model leverages the deep hierarchical feature extraction capabilities of ResNets, which are adept at identifying intricate patterns within electrocardiogram (ECG) data, while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals. The integration of an Attention Mechanism refines the model’s focus on critical segments… More >

  • Open Access

    ARTICLE

    DeBERTa-GRU: Sentiment Analysis for Large Language Model

    Adel Assiri1, Abdu Gumaei2,*, Faisal Mehmood3,*, Touqeer Abbas4, Sami Ullah5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4219-4236, 2024, DOI:10.32604/cmc.2024.050781 - 20 June 2024

    Abstract Modern technological advancements have made social media an essential component of daily life. Social media allow individuals to share thoughts, emotions, and ideas. Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive, negative, neutral, or any other personal emotion to understand the sentiment context of the text. Sentiment analysis is essential in business and society because it impacts strategic decision-making. Sentiment analysis involves challenges due to lexical variation, an unlabeled dataset, and text distance correlations. The execution time increases due to the sequential processing of the sequence models. However,… More >

  • Open Access

    ARTICLE

    Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network

    Arnab Dey1,*, Samit Biswas1, Dac-Nhuong Le2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3067-3087, 2024, DOI:10.32604/cmc.2024.049512 - 15 May 2024

    Abstract Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers the likelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in video streams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enable instant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing action datasets often lack diversity and specificity for workout actions, hindering the development of accurate recognition models. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significant… More >

  • Open Access

    ARTICLE

    RoGRUT: A Hybrid Deep Learning Model for Detecting Power Trapping in Smart Grids

    Farah Mohammad1,*, Saad Al-Ahmadi2, Jalal Al-Muhtadi1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3175-3192, 2024, DOI:10.32604/cmc.2023.042873 - 15 May 2024

    Abstract Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users. It hinders the economic growth of utility companies, poses electrical risks, and impacts the high energy costs borne by consumers. The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data, including information on client consumption, which may be used to identify electricity theft using machine learning and deep learning techniques. Moreover, there also exist different solutions such as hardware-based solutions to detect electricity theft that… More >

Displaying 1-10 on page 1 of 46. Per Page