Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Cloning and Functional Validation of Mung Bean VrPR Gene

    Xiaokui Huang1, Yingbin Xue1, Aaqil Khan1, Hanqiao Hu1, Naijie Feng1,2,*, Dianfeng Zheng1,2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.8, pp. 2369-2382, 2023, DOI:10.32604/phyton.2023.027457

    Abstract For the purpose of functional validation, the mung bean (Vigna radiata) VrPR gene was cloned and overexpressed in Arabidopsis thaliana. The findings revealed that the ORF of VrPR contained 1200 bp, in which 399 amino acids were encoded. Bioinformatics analysis showed that the VrPR protein belonged to the NADB Rossmann superfamily, which was one of the non-transmembrane hydrophilic proteins. VrPR was assumed to have 44 amino acid phosphorylation sites and be contained in chloroplasts. The VrPR secondary structure comprised of random coil, α helix, β angle, and extended chain, all of which were quite compatible with the anticipated tertiary structure.… More >

  • Open Access


    Cloning of and analysis of cadmium resistant in Potentilla sericea


    BIOCELL, Vol.47, No.7, pp. 1571-1582, 2023, DOI:10.32604/biocell.2023.029106

    Abstract Background:Potentilla sericea is a heavy metal hyperaccumulator landscaping plant. MYB transcription factors play an important role in regulating plant stress response to adversity. However, there are few studies on MYB transcription factors in stress tolerance in Potentilla sericea. In this study, the gene was successfully cloned from Potentilla sericea. Methods: Bioinformatic analysis and real-time quantitative PCR (qPCR) methods were used to evaluate this gene. The transgenic A. thaliana were obtained by flower dipping and the gene function was identified by determining physiological indicators under cadmium stress. Results: The open reading frame of is 942 bp, which encodes 313 amino acids… More >

  • Open Access


    Genome-Wide Identification, Expression Profiling and Protein-Protein Interaction Properties of the BEL-Like Homeodomain Gene Family in Apple

    Huifeng Li1, Qiang Zhao2, Hai Wang1, Qinglong Dong3,*, Yi Xu4,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.2, pp. 315-331, 2022, DOI:10.32604/phyton.2022.016951

    Abstract BEL1-like homeodomain (BLH) family proteins are homeodomain transcription factors, which are found ubiquitously in plants and play important roles in regulating meristem and flower development. Although BLH proteins have been reported in some plant species, there is very little information available for plants in the Malus genus (e.g., apple tree:Malus domestica). In the present study, we identified 19 apple MdBLH genes. Phylogenetic analysis revealed that the MdBLH genes could be divided into five groups. Analysis of gene structure showed that MdBLH gene has four exons, and the third exon was 61 bp in length. Chromosomal location analysis suggested that the MdBLHMore >

Displaying 1-10 on page 1 of 3. Per Page