Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (235)
  • Open Access

    ARTICLE

    Coverless Image Steganography System Based on Maze Game Generation

    Al Hussien Seddik Saad1, Mohammed S. Reda2, Gamal M. Behery2, Ahmed A. El-harby2, Mohammed Baz3, Mohamed Abouhawwash4,5,*, Ahmed Ismail Ebada6

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 125-138, 2023, DOI:10.32604/iasc.2023.032084

    Abstract The trend of digital information transformation has become a topic of interest. Many data are threatening; thus, protecting such data from attackers is considered an essential process. Recently, a new methodology for data concealing has been suggested by researchers called coverless steganography. Coverless steganography can be accomplished either by building an image database to match its image subblocks with the secret message to obtain the stego image or by generating an image. This paper proposes a coverless image steganography system based on pure image generation using secret message bits with a capacity higher than the other traditional systems. The system… More >

  • Open Access

    ARTICLE

    Using MsfNet to Predict the ISUP Grade of Renal Clear Cell Carcinoma in Digital Pathology Images

    Kun Yang1,2,3, Shilong Chang1, Yucheng Wang1, Minghui Wang1, Jiahui Yang1, Shuang Liu1,2,3, Kun Liu1,2,3, Linyan Xue1,2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 393-410, 2024, DOI:10.32604/cmc.2023.044994

    Abstract Clear cell renal cell carcinoma (ccRCC) represents the most frequent form of renal cell carcinoma (RCC), and accurate International Society of Urological Pathology (ISUP) grading is crucial for prognosis and treatment selection. This study presents a new deep network called Multi-scale Fusion Network (MsfNet), which aims to enhance the automatic ISUP grade of ccRCC with digital histopathology pathology images. The MsfNet overcomes the limitations of traditional ResNet50 by multi-scale information fusion and dynamic allocation of channel quantity. The model was trained and tested using 90 Hematoxylin and Eosin (H&E) stained whole slide images (WSIs), which were all cropped into 320… More >

  • Open Access

    Physics Based Digital Twin Modelling from Theory to Concept Implementation Using Coiled Springs Used in Suspension Systems

    Mohamed Ammar1,*, Alireza Mousavi1, Hamed Al-Raweshidy2,*

    Digital Engineering and Digital Twin, Vol.2, pp. 1-31, 2024, DOI:10.32604/dedt.2023.044930

    Abstract The advent of technology around the globe based on the Internet of Things, Cloud Computing, Big Data, Cyber-Physical Systems, and digitalisation. This advancement introduced industry 4.0. It is challenging to measure how enterprises adopt the new technologies. Industry 4.0 introduced Digital Twins, given that no specific terms or definitions are given to Digital Twins still challenging to define or conceptualise the Digital Twins. Many academics and industries still use old technologies, naming it Digital Twins. This young technology is in danger of reaching the plateau despite the immense benefit to sectors. This paper proposes a novel and unique definition for… More >

  • Open Access

    ARTICLE

    Distribution Line Longitudinal Protection Method Based on Virtual Measurement Current Restraint

    Wei Wang1, Yang Yu1, Simin Luo2,*, Wenlin Liu2, Wei Tang1, Yuanbo Ye1

    Energy Engineering, Vol.121, No.2, pp. 315-337, 2024, DOI:10.32604/ee.2023.042082

    Abstract As an effective approach to achieve the “dual-carbon” goal, the grid-connected capacity of renewable energy increases constantly. Photovoltaics are the most widely used renewable energy sources and have been applied on various occasions. However, the inherent randomness, intermittency, and weak support of grid-connected equipment not only cause changes in the original flow characteristics of the grid but also result in complex fault characteristics. Traditional overcurrent and differential protection methods cannot respond accurately due to the effects of unknown renewable energy sources. Therefore, a longitudinal protection method based on virtual measurement of current restraint is proposed in this paper. The positive… More >

  • Open Access

    ARTICLE

    The Effect of Atrial Septal Defect Closure on Cardiac Volumetric Changes in Adults, Transcatheter Versus Surgical Closure, a Pilot Cardiac Magnetic Resonance Study

    Amr Mansour1, Noha M. Gamal2,*, Alaa M. Nady3, Amr Ibraheem3, Dalia M. Salah4, Khaled M. El-Maghraby2

    Congenital Heart Disease, Vol.18, No.6, pp. 679-691, 2023, DOI:10.32604/chd.2023.020028

    Abstract Background: Closure of an atrial septal defect (ASD) reduces right-side heart volumes by abolishing shunting with simultaneous improvement of the left ventricle (LV) filling and functions due to ventricular interdependence, thereby improving symptoms. Furthermore, studies conducted on atrial volume changes after ASD closure are limited. Cardiac magnetic resonance (CMR) is considered as the gold standard method for measuring cardiac volume and mass. Objective: We aimed to study the effect of transcatheter and surgical closure of secundum ASD on cardiac volumes and systolic functions as well as the fate of tricuspid regurgitation (TR), using CMR analysis. Methods: We prospectively enrolled 30… More >

  • Open Access

    EDITORIAL

    Introduction to the Journal of Digital Engineering and Digital Twin

    Satya Atluri1, Leiting Dong2,*

    Digital Engineering and Digital Twin, Vol.1, pp. 1-2, 2023, DOI:10.32604/dedt.2023.028823

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Integration of Digital Twins and Artificial Intelligence for Classifying Cardiac Ischemia

    Mohamed Ammar1,*, Hamed Al-Raweshidy2,*

    Journal on Artificial Intelligence, Vol.5, pp. 195-218, 2023, DOI:10.32604/jai.2023.045199

    Abstract Despite advances in intelligent medical care, difficulties remain. Due to its complicated governance, designing, planning, improving, and managing the cardiac system remains difficult. Oversight, including intelligent monitoring, feedback systems, and management practises, is unsuccessful. Current platforms cannot deliver lifelong personal health management services. Insufficient accuracy in patient crisis warning programmes. No frequent, direct interaction between healthcare workers and patients is visible. Physical medical systems and intelligent information systems are not integrated. This study introduces the Advanced Cardiac Twin (ACT) model integrated with Artificial Neural Network (ANN) to handle real-time monitoring, decision-making, and crisis prediction. THINGSPEAK is used to create an… More >

  • Open Access

    ARTICLE

    Use of Geographic Information System and Digital Elevation Model to Analyze the Hydro-Morphometric Characteristics of the Tshopo River Sub-Catchments, Democratic Republic of Congo

    Utilisation du système d’information géographique et modèle numérique de terrain dans l’analyse des caractéristiques hydro-morphométriques des sous-bassins versants de la rivière Tshopo, République démocratique du Congo

    Faidance Mashauri1,2,*, Mokili Mbuluyo1,3, Nsalambi Nkongolo2,4

    Revue Internationale de Géomatique, Vol.32, pp. 99-122, 2023, DOI:10.32604/rig.2023.044899

    Abstract The analysis and quantification of hydro-morphometric characteristics are essential for better management of water resources and more effective planning of hydroelectric projects in the Tshopo basin. Unfortunately, few studies have been carried out to assess these characteristics at the scale of this basin. Our methodological approach consists of using Geographic Information System (GIS) software analysis tools applied to the Digital Elevation Model (DEM) derived from the Advanced Land Observing Satellite (ALOS) World 3D-30m image. This enabled us to automatically extract the hydrographic network and generate the Tshopo sub-watersheds. The results of this analysis show that the Tshopo catchment area is… More >

  • Open Access

    ARTICLE

    Automated Video Generation of Moving Digits from Text Using Deep Deconvolutional Generative Adversarial Network

    Anwar Ullah1, Xinguo Yu1,*, Muhammad Numan2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2359-2383, 2023, DOI:10.32604/cmc.2023.041219

    Abstract Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved, including digit deformation, noise interference between frames, blurred output, and the need for temporal coherence across frames. In this paper, we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network (DD-GAN). The DD-GAN comprises a Deep Deconvolutional Neural Network (DDNN) as a Generator (G) and a modified Deep Convolutional Neural Network (DCNN) as a Discriminator (D) to ensure temporal coherence between adjacent frames. The proposed research involves several steps.… More >

  • Open Access

    ARTICLE

    Digital Image Encryption Algorithm Based on Double Chaotic Map and LSTM

    Luoyin Feng1,*, Jize Du2, Chong Fu1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1645-1662, 2023, DOI:10.32604/cmc.2023.042630

    Abstract In the era of network communication, digital image encryption (DIE) technology is critical to ensure the security of image data. However, there has been limited research on combining deep learning neural networks with chaotic mapping for the encryption of digital images. So, this paper addresses this gap by studying the generation of pseudo-random sequences (PRS) chaotic signals using dual logistic chaotic maps. These signals are then predicted using long and short-term memory (LSTM) networks, resulting in the reconstruction of a new chaotic signal. During the research process, it was discovered that there are numerous training parameters associated with the LSTM… More >

Displaying 1-10 on page 1 of 235. Per Page