Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    CHRM3 is a novel prognostic factor of poor prognosis and promotes glioblastoma progression via activation of oncogenic invasive growth factors

    BIN ZHANG1,#, JIANYI ZHAO3,#, YONGZHI WANG2,#, HUA XU1, BO GAO1, GUANGNING ZHANG1, BIN HAN1, GUOHONG SONG1, JUNCHEN ZHANG1,*, WEI MENG1,*

    Oncology Research, Vol.31, No.6, pp. 917-927, 2023, DOI:10.32604/or.2023.030425

    Abstract Glioblastoma (GBM) is the most aggressive cancer of the brain and has a high mortality rate due to the lack of effective treatment strategy. Clarification of molecular mechanisms of GBM’s characteristic invasive growth are urgently needed to improve the poor prognosis. Single-nuclear sequencing of primary and recurrent GBM samples revealed that levels of M3 muscarinic acetylcholine receptor (CHRM3) were significantly higher in the recurrent samples than in the primary samples. Moreover, immunohistochemical staining of an array of GBM samples showed that high levels of CHRM3 correlated with poor prognosis, consistent with The Cancer Genome Atlas database. Knockdown of CHRM3 inhibited… More >

  • Open Access

    VIEWPOINT

    Inflammatory priming of mesenchymal stem cells: Focus on growth factors enhancement

    ALEKSANDRA GORNOSTAEVA, ELENA ANDREEVA*, LUDMILA BURAVKOVA*

    BIOCELL, Vol.46, No.9, pp. 2049-2052, 2022, DOI:10.32604/biocell.2022.019993

    Abstract Multipotent mesenchymal stromal cells (MSCs) are actively involved in reparation and inflammation processes, providing damaged tissue reparation and suppressing immune cell responses in vivo. The effects are mostly due to the production of a wide range of paracrine factors, including growth factors and immunomodulatory mediators. To induce immunosuppressive activity, MSCs are primed by inflammatory cytokines, which results in an increased production of immunomodulatory molecules. However, stimulation of reparative properties is also necessary. This viewpoint manuscript highlights the possibilities of inflammatory priming to increase the production of growth factors by MSCs. More >

  • Open Access

    VIEWPOINT

    Mesenchymal stem cells derived secretome as an innovative cell-free therapeutic approach

    EJLAL ABU-EL-RUB1,2,*, RAMADA R. KHASAWNEH1, FATIMAH A. ALMAHASNEH1, HANA M. ZEGALLAI3,4

    BIOCELL, Vol.46, No.4, pp. 907-911, 2022, DOI:10.32604/biocell.2022.018306

    Abstract The paracrine and immunomodulatory cytokines secreted by mesenchymal stem cells (MSCs), generally referred to as the MSCs derived secretome, has substantial potential for the treatment of many chronic and degenerative diseases. MSCs secretome contains both common and disease specific cytokines and modulators that can be beneficial against a wide range of chronic diseases. Herein, we discuss the MSCs secretome composition profile and its translational applicability and the challenges surrounding its use in clinical settings. More >

  • Open Access

    ARTICLE

    Integration of Biochemical and Biomechanical Signals Regulating Endothelial Barrier Function

    Virginia Aragon Sanabria1, Cheng Dong*

    Molecular & Cellular Biomechanics, Vol.15, No.1, pp. 1-19, 2018, DOI:10.3970/mcb.2018.015.001

    Abstract Endothelial barrier function is critical for tissue homeostasis throughout the body. Disruption of the endothelial monolayer leads to edema, vascular diseases and even cancer metastasis among other pathological conditions. Breakdown of the endothelial barrier integrity triggered by cytokines (e.g.IL-8,IL-1β) and growth factors (e.g.VEGF) is well documented. However, endothelial cells are subject to major biomechanical forces that affect their behavior. Due to their unique location at the interface between circulating blood and surrounding tissues, endothelial cells experience shear stress, strain and contraction forces. More than three decades ago, it was already appreciated that shear flow caused endothelial cells alignment in the… More >

Displaying 1-10 on page 1 of 4. Per Page