Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (215)
  • Open Access

    PROCEEDINGS

    Grayscale Digital Light Processing of Graded Porous Materials for Bone Regeneration

    Guanghai Fei*, Yue Zhang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011869

    Abstract The regeneration of large-segment bone defects remains a significant challenge in orthopedics. Synthetic bone implants offer a promising solution; however, existing implants struggle to accurately replicate the heterogeneity and graded porosity of natural bone tissue while also failing to meet patients' individualized needs. Leveraging stereolithography-based 3D printing, we developed a halftoning grayscale 3D printing strategy for the precise fabrication of bone scaffolds with complex structures and graded porosity, closely mimicking natural bone tissue. This research focuses on optimizing both the 3D printing process and the performance of graded porous biomimetic bone scaffolds. More >

  • Open Access

    ARTICLE

    The Chinese Hogg Climate Anxiety Scale (HCAS): Revision and validation integrating classical test theory and network analysis approaches

    Xi Chen1,3, Wanru Lin1, Yuefu Liu2,*

    Journal of Psychology in Africa, Vol.35, No.5, pp. 661-669, 2025, DOI:10.32604/jpa.2025.068787 - 24 October 2025

    Abstract Accurate assessment of climate anxiety is crucial, yet the cross-cultural transportability of existing instruments remains an open question. This study translated and validated the Hogg Climate Anxiety Scale for the Chinese context. A total of 959 students (females = 69.7%; M age = 19.60 years, SD = 1.40 years) completed the Hogg Climate Anxiety Scale, with the Climate Change Anxiety Scale and the Anxiety Presence Subscale served as criterion measures for concurrent validity. Test–retest reliability was evaluated with a subset after one month. Confirmatory factor analysis supported the original four-factor structure and measurement invariance across genders.… More >

  • Open Access

    ARTICLE

    System Modeling and Deep Learning-Based Security Analysis of Uplink NOMA Relay Networks with IRS and Fountain Codes

    Phu Tran Tin1, Minh-Sang Van Nguyen2, Quy-Anh Bui1, Agbotiname Lucky Imoize3, Byung-Seo Kim4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2521-2543, 2025, DOI:10.32604/cmes.2025.066669 - 31 August 2025

    Abstract Digital content such as games, extended reality (XR), and movies has been widely and easily distributed over wireless networks. As a result, unauthorized access, copyright infringement by third parties or eavesdroppers, and cyberattacks over these networks have become pressing concerns. Therefore, protecting copyrighted content and preventing illegal distribution in wireless communications has garnered significant attention. The Intelligent Reflecting Surface (IRS) is regarded as a promising technology for future wireless and mobile networks due to its ability to reconfigure the radio propagation environment. This study investigates the security performance of an uplink Non-Orthogonal Multiple Access (NOMA)… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Heavily Occluded Face Detection Using Histogram of Oriented Gradients and Deep Learning Models

    Thaer Thaher1,*, Muhammed Saffarini2, Majdi Mafarja3, Abdulaziz Alashbi4, Abdul Hakim Mohamed5, Ayman A. El-Saleh6

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2359-2394, 2025, DOI:10.32604/cmes.2025.065388 - 31 August 2025

    Abstract Face detection is a critical component in modern security, surveillance, and human-computer interaction systems, with widespread applications in smartphones, biometric access control, and public monitoring. However, detecting faces with high levels of occlusion, such as those covered by masks, veils, or scarves, remains a significant challenge, as traditional models often fail to generalize under such conditions. This paper presents a hybrid approach that combines traditional handcrafted feature extraction technique called Histogram of Oriented Gradients (HOG) and Canny edge detection with modern deep learning models. The goal is to improve face detection accuracy under occlusions. The… More >

  • Open Access

    ARTICLE

    The Effect of Polymer-Assisted Abrasive Jets on the Surface Quality of Cut Marbles

    Yunfeng Zhang, Dong Hu*, Yuan Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1641-1655, 2025, DOI:10.32604/fdmp.2025.065820 - 31 July 2025

    Abstract To address the challenges of poor surface quality and high energy consumption in marble cutting, this study introduces an auxiliary abrasive jet cutting technology enhanced by the use of polyacrylamide (PAM) as a drag-reducing additive. The effects of feed rate (50–300 mm/min), polymer concentration (0–0.5 g/L), and nozzle spacing (4–12 mm) on kerf width and surface roughness are systematically investigated through an orthogonal experimental design. Results reveal that feed rate emerges as the most significant factor (p < 0.01), followed by PAM concentration and nozzle spacing. The optimal set of parameters, comprising a 200 mm/min feed More >

  • Open Access

    ARTICLE

    Single-Step Efficient Purification of Phosphogypsum via Wet Grinding and Microenvironmental Treatment

    Shun Chen1,2,3, Jingyuan Fan1, Xingyang He1,2,3,*, Ying Su1,2,3, Jizhan Chen1, Yiming Cao1, Meng Fan1, Zhihao Liu1, Zihao Jin1,2,3, Yubo Li1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1673-1688, 2025, DOI:10.32604/fdmp.2025.065003 - 31 July 2025

    Abstract The presence of impurities in phosphogypsum has long impeded its effective utilization, highlighting the need for energy-efficient and sustainable purification methods. This study proposes a novel purification strategy that synergistically combines pH regulation and micelle-assisted treatment to create an optimized microenvironment for impurity removal. Under mechanical grinding conditions, this approach enhances the rheological properties of the phosphogypsum slurries and facilitates the dissolution and removal of impurity ions. Experimental results demonstrate that the synergistic method achieves a remarkable 64.01% increase in whiteness while significantly reducing soluble phosphorus and fluoride content in a single-step process. This technique More >

  • Open Access

    REVIEW

    Integrative Perspectives on Multi-Level Mechanisms in Plant-Pathogen Interactions: From Molecular Defense to Ecological Resilience

    Adnan Amin, Wajid Zaman*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 1973-1996, 2025, DOI:10.32604/phyton.2025.067885 - 31 July 2025

    Abstract Plant-pathogen interactions involve complex biological processes that operate across molecular, cellular, microbiome, and ecological levels, significantly influencing plant health and agricultural productivity. In response to pathogenic threats, plants have developed sophisticated defense mechanisms, such as pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), which rely on specialized recognition systems such as pattern recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat (NLR) proteins. These immune responses activate intricate signaling pathways involving mitogen-activated protein kinase cascades, calcium fluxes, reactive oxygen species production, and hormonal cross-talk among salicylic acid, jasmonic acid, and ethylene. Furthermore, structural barriers such as callose deposition… More >

  • Open Access

    ARTICLE

    Synergistic Effect of Zinc Oxide, Magnesium Oxide and Graphene Nanomaterials on Fusarium oxysporum-Inoculated Tomato Plants

    Alejandra Sánchez-Reyna1, Yolanda González-García2, Ángel Gabriel Alpuche-Solís3, Gregorio Cadenas-Pliego4, Adalberto Benavides-Mendoza5,6, Antonio Juárez-Maldonado6,7,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 2097-2116, 2025, DOI:10.32604/phyton.2025.067092 - 31 July 2025

    Abstract Tomato is an economically important crop that is susceptible to biotic and abiotic stresses, situations that negatively affect the crop cycle. Biotic stress is caused by phytopathogens such as Fusarium oxysporum f. sp. lycopersici (FOL), responsible for vascular wilt, a disease that causes economic losses of up to 100% in crops of interest. Nanomaterials represent an area of opportunity for pathogen control through stimulations that modify the plant development program, achieving greater adaptation and tolerance to stress. The aim of this study was to evaluate the antimicrobial capacity of the nanoparticles and the concentrations used in tomato… More >

  • Open Access

    REVIEW

    Eosinophils in Rheumatoid Arthritis: A Multifaceted Role in the Pathogenesis of the Disease

    Alexander Blagov1,*, Michael Bukrinsky2, Aleksandra Utkina3, Gulalek Babayeva4, Vasily Sukhorukov1, Alexander Orekhov5

    BIOCELL, Vol.49, No.7, pp. 1125-1140, 2025, DOI:10.32604/biocell.2025.062821 - 25 July 2025

    Abstract Eosinophils are multifunctional granulocytes that contribute to the initiation and modulation of inflammation. Accumulating evidence suggests that eosinophils are adaptable leukocytes that orchestrate the resolution of inflammatory responses. The most prevalent chronic inflammatory illness, rheumatoid arthritis (RA), is typified by persistent synovitis that makes it hard for the disease to go away on its own. Interestingly, a unique subset of eosinophils known as regulatory eosinophils has been found in RA patients’ synovium, especially while the disease is in remission. Pro-resolving signatures of regulatory eosinophils in the synovium are distinct from those of their lung counterparts. More >

  • Open Access

    ARTICLE

    Addressing Class Overlap in Sonic Hedgehog Medulloblastoma Molecular Subtypes Classification Using Under-Sampling and SVD-Enhanced Multinomial Regression

    Isra Mohammed1, Mohamed Elhafiz M. Musa2, Murtada K. Elbashir3,*, Ayman Mohamed Mostafa3, Amin Ibrahim Adam4, Mahmood A. Mahmood3, Areeg S. Faggad5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3749-3763, 2025, DOI:10.32604/cmc.2025.063880 - 03 July 2025

    Abstract Sonic Hedgehog Medulloblastoma (SHH-MB) is one of the four primary molecular subgroups of Medulloblastoma. It is estimated to be responsible for nearly one-third of all MB cases. Using transcriptomic and DNA methylation profiling techniques, new developments in this field determined four molecular subtypes for SHH-MB. SHH-MB subtypes show distinct DNA methylation patterns that allow their discrimination from overlapping subtypes and predict clinical outcomes. Class overlapping occurs when two or more classes share common features, making it difficult to distinguish them as separate. Using the DNA methylation dataset, a novel classification technique is presented to address… More >

Displaying 1-10 on page 1 of 215. Per Page