Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (394)
  • Open Access

    ARTICLE

    RADIO FREQUENCY HEATING OF IMPLANTED TISSUE ENGINEERED SCAFFOLDS: SIMULATION AND EXPERIMENTAL STUDIES

    Mohammad Izadifara,b,*, Xiongbiao Chena,b

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-7, 2012, DOI:10.5098/hmt.v3.4.3004

    Abstract Heat can be potentially used for accelerating biodegradation of implanted tissue engineered scaffolds. Cyclic and continuous radio frequency (RF) heating was applied to implanted chitosan and alginate scaffolds at 4 applied voltages, 3 frequencies, and 2 thermally conditioning environments. A 3D finite element model was developed to simulate the RF treatment. A uniform RF heating was achieved at the scaffold top. For alginate, voltage was the only significant RF heating factor while both frequency and voltage significantly affected RF heating of chitosan. Less temperature gradient across the scaffold was achieved at a conditioning environment at <30°C. Surrounding tissue was insignificantly… More >

  • Open Access

    ARTICLE

    EXPERIMENTS ON DOMINANT FORCE REGIMES IN FLOW BOILING USING MINI-TUBES

    Soumei Babaa,*, Nobuo Ohtania, Osamu Kawanamib, Koichi Inouec, Haruhiko Ohtaa

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-8, 2012, DOI:10.5098/hmt.v3.4.3002

    Abstract Effects of tube orientation on flow boiling heat transfer coefficients were investigated for FC72 flowing in single mini-tubes with tube diameters of 0.13 and 0.51 mm to define boundaries on a dominant force regime map. For the tube diameter of 0.51 mm, when mass velocity and vapor quality was varied, heat transfer coefficients were influenced by tube orientation at Froude number Fr < 4, while the effect of tube orientation on heat transfer coefficients disappears at Fr > 4. The results indicated that the boundary between the body force dominated and the inertia dominated regimes was given by Fr ≈… More >

  • Open Access

    ARTICLE

    Large-Scale 3D Thermal Transfer Analysis with 1D Model of Piped Cooling Water

    Shigeki Kaneko1, Naoto Mitsume2, Shinobu Yoshimura1,*

    Digital Engineering and Digital Twin, Vol.2, pp. 33-48, 2024, DOI:10.32604/dedt.2023.044279

    Abstract In an integrated coal gasification combined cycle plant, cooling pipes are installed in the gasifier reactor and water cooling is executed to avoid reaching an excessively high temperature. To accelerate the design, it is necessary to develop an analysis system that can simulate the cooling operation within the practical computational time. In the present study, we assumed the temperature fields of the cooled object and the cooling water to be governed by the three-dimensional (3D) heat equation and the one-dimensional (1D) convection-diffusion equation, respectively. Although some existing studies have employed similar modeling, the applications have been limited to simple-shaped structures.… More >

  • Open Access

    RETRACTION

    Retraction: Fluid Flow and Mixed Heat Transfer in a Horizontal Channel with an Open Cavity and Wavy Wall

    Tohid Adibi1, Shams Forruque Ahmed2,*, Omid Adibi3, Hassan Athari4, Irfan Anjum Badruddin5, Syed Javed5

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 103-103, 2023, DOI:10.32604/iasc.2023.047521

    Abstract This article has no abstract. More >

  • Open Access

    PROCEEDINGS

    Heat Transfer Performance Improvement of Twisted Tubes with Different Starts by Combination of Dimples

    Tao Wang1, Zhen Tian1, Chen Gao1, Quanfu Gao1, Kewei Song1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.8880

    Abstract With the rapid development of the economy and the increasing consumption of fossil energy, energysaving becomes imperative [1,2]. Improving the heat transfer efficiency of heat exchangers, which are widely applied in many fields, is important for energy utilization [3,4]. Twisted tube can produce secondary flow, increase turbulence and thin thermal boundary layer, and hence the enhancement of heat transfer [5-9]. However, the mixture of the fluid between the center of the twisted tube and the region around the tube is still not effectively improved. Thus, the heat transfer of the twisted tube can be further improved by combining with other… More >

  • Open Access

    ARTICLE

    Impact of a Magnetic Dipole on Heat Transfer in Non-Conducting Magnetic Fluid Flow over a Stretching Cylinder

    Anupam Bhandari*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 475-486, 2024, DOI:10.32604/fdmp.2023.041618

    Abstract The thermal behavior of an electrically non-conducting magnetic liquid flowing over a stretching cylinder under the influence of a magnetic dipole is considered. The governing nonlinear differential equations are solved numerically using a finite element approach, which is properly validated through comparison with earlier results available in the literature. The results for the velocity and temperature fields are provided for different values of the Reynolds number, ferromagnetic response number, Prandtl number, and viscous dissipation parameter. The influence of some physical parameters on skin friction and heat transfer on the walls of the cylinder is also investigated. The applicability of this… More > Graphic Abstract

    Impact of a Magnetic Dipole on Heat Transfer in Non-Conducting Magnetic Fluid Flow over a Stretching Cylinder

  • Open Access

    ARTICLE

    A New Heat Transfer Model for Multi-Gradient Drilling with Hollow Sphere Injection

    Jiangshuai Wang1,*, Chuchu Cai1, Pan Fu2,3, Jun Li4,5, Hongwei Yang4, Song Deng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 537-546, 2024, DOI:10.32604/fdmp.2023.030430

    Abstract Multi-gradient drilling is a new offshore drilling method. The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise control of the wellbore pressure. In this study, a new heat transfer model is proposed by which the variable mass flow is properly taken into account. Using this model, the effects of the main factors influencing the wellbore temperature are analyzed. The results indicate that at the position where the separation injection device is installed, the temperature increase of the fluid in the drill pipe is mitigated due… More >

  • Open Access

    ARTICLE

    Influence of Brownian Motion, Thermophoresis and Magnetic Effects on a Fluid Containing Nanoparticles Flowing over a Stretchable Cylinder

    Aaqib Majeed1,*, Ahmad Zeeshan2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 525-536, 2024, DOI:10.32604/fdmp.2023.028716

    Abstract The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined. The classical Navier-Stokes equations are considered in a porous frame. In addition, the Lorentz force is taken into account. The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation. The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB. The evolution of the boundary layer and the growing velocity is shown graphically together with the related profiles of concentration and temperature.… More >

  • Open Access

    ARTICLE

    DETERMINING HEAT TRANSFER COEFFICIENT OF HUMAN BODY

    A. Najjaran*, Ak. Najjaran, A. Fotoohabadi, A.R. Shiri

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-5, 2013, DOI:10.5098/hmt.v4.1.3003

    Abstract In this paper, the aim is obtaining convection coefficient of human body. This field of study is essential in study of ventilation systems, astronauts’ clothes and any other fields in which human body is the main concern. At first a 3D human body has been designed by unstructured grids. Feet and hands are stretched completely in considered sample. Two postures (standing and supine) are considered for body. Soles and the back of entire body are considered in contact with the ground respectively in these postures. Other parts of human body are exposed to surrounding air. The heat transfer and the… More >

  • Open Access

    ARTICLE

    BOUNDARY LAYER STAGNATION-POINT FLOW OF CASSON FLUID AND HEAT TRANSFER TOWARDS A SHRINKING/STRETCHING SHEET

    Krishnendu Bhattacharyya*

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-9, 2013, DOI:10.5098/hmt.v4.2.3003

    Abstract The steady boundary layer stagnation-point flow of Casson fluid and heat transfer towards a shrinking/stretching sheet is studied. Appropriate similarity transformations are employed to transform the governing partial differential equations into the self-similar ordinary differential equations and those are then solved numerically using very efficient shooting method. The numerical computations are carried out for several values of parameters involved (especially, velocity ratio parameter and Casson parameter) to know the possibility of similarity solution for the boundary layer stagnation-point flow. It is found that the range of velocity ratio parameter for which similarity solution exists is unaltered for any change in… More >

Displaying 41-50 on page 5 of 394. Per Page