Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,136)
  • Open Access

    ARTICLE

    On the NGF Procedure for LBIE Elastostatic Fracture Mechanics

    L.S. Miers1, J.C.F. Telles2

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.3, pp. 161-170, 2006, DOI:10.3970/cmes.2006.014.161

    Abstract This work aims at extending the concept of the Numerical Green's Function (NGF), well known from boundary element applications to fracture mechanics, to the Local Boundary Integral Equation (LBIE) context. As a "companion" solution, the NGF is used to remove the integrals over the crack boundary and is introduced only for source points whose support touches or contains the crack. The results obtained with the coupling of NGF-LBIE in previous potential discontinuity Laplace's equation problems and the authors' experience in NGF-BEM fracture mechanics were the motivation for this development. More >

  • Open Access

    ARTICLE

    Multiscale Simulation Using Generalized Interpolation Material Point (GIMP) Method and Molecular Dynamics (MD)1

    J. Ma2, H. Lu2, B. Wang2, R. Hornung3, A. Wissink3, R. Komanduri2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 101-118, 2006, DOI:10.3970/cmes.2006.014.101

    Abstract A new method for multiscale simulation bridging two scales, namely, the continuum scale using the generalized interpolation material point (GIMP) method and the atomistic scale using the molecular dynamics (MD), is presented and verified in 2D. The atomistic strain from the molecular dynamics simulation is determined through interpolation of the displacement field into an Eulerian background grid using the same generalized interpolation functions as that in the GIMP method. The atomistic strain is consistent with that determined from the virial theorem for interior points but provides more accurate values at the boundary of the MD region and in the transition… More >

  • Open Access

    ARTICLE

    Thermomechanical Analysis of Functionally Graded Composites under Laser Heating by the MLPG Method

    H. K. Ching1,2, J. K. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 199-218, 2006, DOI:10.3970/cmes.2006.013.199

    Abstract The Meshless Local Petrov-Galerkin (MLPG) method is a novel numerical approach similar to finite element methods, but it allows the construction of the shape function and domain discretization without defining elements. In this study, the MLPG analysis for transient thermomechanical response of a functionally graded composite heated by Gaussian laser beams is presented. The composite is modeled as a 2-D strip which consists of metal and ceramic phases with the volume fraction varying over the thickness. Two sets of the micromechanical models are employed for evaluating the effective material properties, respectively. Numerical results are presented for the thermomechanical responses in… More >

  • Open Access

    ARTICLE

    Meshfree Solution of Q-tensor Equations of Nematostatics Using the MLPG Method

    Radek Pecher1, Steve Elston, Peter Raynes

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.2, pp. 91-102, 2006, DOI:10.3970/cmes.2006.013.091

    Abstract Meshfree techniques for solving partial differential equations in physics and engineering are a powerful new alternative to the traditional mesh-based techniques, such as the finite difference method or the finite element method. The elimination of the domain mesh enables, among other benefits, more efficient solutions of nonlinear and multi-scale problems. One particular example of these kinds of problems is a Q-tensor based model of nematic liquid crystals involving topological defects.
    This paper presents the first application of the meshless local Petrov-Galerkin method to solving the Q-tensor equations of nematostatics. The theoretical part introduces the Landau -- de Gennes free-energy… More >

  • Open Access

    ARTICLE

    The Optimal Radius of the Support of Radial Weights Used in Moving Least Squares Approximation

    Y.F. Nie1,2, S.N. Atluri2, C.W. Zuo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.2, pp. 137-148, 2006, DOI:10.3970/cmes.2006.012.137

    Abstract Owing to the meshless and local characteristics, moving least squares (MLS) methods have been used extensively to approximate the unknown function of partial differential equation initial boundary value problem. In this paper, based on matrix analysis, a sufficient and necessary condition for the existence of inverse of coefficient matrix used in MLS methods is developed firstly. Then in the light of approximate theory, a practical mathematics model is posed to obtain the optimal radius of support of radial weights used in MLS methods. As an example, while uniform distributed particles and the 4th order spline weight function are adopted in… More >

  • Open Access

    ARTICLE

    Past Cone Dynamics and Backward Group Preserving Schemes for Backward Heat Conduction Problems

    C.-S. Liu1, C.-W. Chang2, J.-R. Chang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.1, pp. 67-82, 2006, DOI:10.3970/cmes.2006.012.067

    Abstract In this paper we are concerned with the backward problems governed by differential equations. It is a first time that we can construct a backward time dynamics on the past cone, such that an augmented dynamical system of the Lie type X˙ = B(X,t)X with t ∈ R, X ∈ Mn+1 lying on the past cone and Bso(n,1), was derived for the backward differential equations system x· =f(x,t), t ∈ R, x ∈ Rn. These two differential equations systems are mathematically equivalent. Then we apply the backward group preserving scheme (BGPS), which is an explicit single-step… More >

  • Open Access

    ARTICLE

    An Efficient Backward Group Preserving Scheme for the Backward in Time Burgers Equation

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.1, pp. 55-66, 2006, DOI:10.3970/cmes.2006.012.055

    Abstract In this paper we are concerned with the numerical integration of Burgers equation backward in time. We construct a one-step backward group preserving scheme (BGPS) for the semi-discretization of Burgers equation. The one-step BGPS is very effectively to calculate the solution at an initial time t = 0 from a given final data at t = T, which with a time stepsize equal to T and with a suitable grid length produces a highly accurate solution never seen before. Under noisy final data the BGPS is also robust to against the disturbance. When the solution appears steep gradient, several steps… More >

  • Open Access

    ARTICLE

    On Three-dimensional Effects in Propagation of Surface-breaking Cracks

    A. Dimitrov1, F.-G. Buchholz2, E. Schnack3

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.1, pp. 1-26, 2006, DOI:10.3970/cmes.2006.012.001

    Abstract Crack propagation in 3D-structures cannot be reduced (in general) to a series of plane problems along the crack front edge, due to the existence of some "corners'' on the crack front, where the elastic fields are of a real three-dimensional nature. The most important example for such a corner ist the point, where the crack front intersects a free surface of the body. According to the concept of weak and strong singularities, it is possible to obtain the asymptotics for the stress intensity factor (SIF) as well as the strain energy release rate (SERR) in the neighborhood of such a… More >

  • Open Access

    ARTICLE

    ADVENTURE AutoGL: A Handy Graphics and GUI Library for Researchers and Developers of Numerical Simulations

    H. Kawai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 111-120, 2006, DOI:10.3970/cmes.2006.011.111

    Abstract ADVENTURE AutoGL (pronounced as ‘Ote- ga-lu’) is a graphics and GUI library, dedicated for simulation-based research and development. It is designed for the simulation users to develop their own data viewers and editors. Currently, the library is used among many researchers and simulation users, mainly in universities and national research centers. Its functionalities and supported platforms are explained. AutoGL applications of various kinds of simulation methods are demonstrated also. More >

  • Open Access

    ARTICLE

    Application of MBPE Method to Frequency Domain Hybrid Techniques to Compute RCS of Electrically Large Objects

    C. J. Reddy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 455-462, 2004, DOI:10.3970/cmes.2004.005.455

    Abstract This paper presents an efficient algorithm to evaluate multi-spectral and multi-angular monostatic radar cross section (RCS) of large objects with very fine increments. The technique is based on the combination of Model Based Parameter Estimation (MBPE) method with hybrid frequency domain formulations. A general approach to formulation of MBPE is presented along with a similar approach called the Asymptotic Waveform Evaluation (AWE). Various numerical examples are presented for multi-spectral response calculations using method of moments (MoM) and the hybrid Finite Element-MoM technique in conjunction with MBPE. Example application of MBPE for hybrid MoM-Physical Optics approach for multi-angular calculations is also… More >

Displaying 1841-1850 on page 185 of 2136. Per Page