Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,286)
  • Open Access

    ARTICLE

    A General Magnetoelastic Coupling Theory of Deformable Magnetized Medium Including Magnetic Forces and Magnetostriction Effects

    Hao-Miao Zhou1,2, You-He Zhou1, Xiao-Jing Zheng1, Jing Wei3

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 237-250, 2009, DOI:10.3970/cmc.2009.012.237

    Abstract From the viewpoint of energy, a general magnetoelastic coupling theory including magnetic forces and magnetostriction effects is proposed for deformable magnetized medium. Firstly, a Taylor series expansion of independent variables of stress and magnetization in the elastic Gibbs free energy function is applied to obtain a polynomial expression; and then based on the magnetoelastic coupling mechanism, appropriate transcendental functions are substituted for some terms in a polynomial constitutive relationship derived by way of substituting the polynomial Gibbs free energy function in thermodynamic equations to achieve a more compact magnetostrictive constitutive relationship. The numerical simulation exhibits that the predicted magnetostrictive strain… More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method for a Quasilinear Elliptic Boundary Value Problem, Defined in an Arbitrary Plane Domain

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.11, No.1, pp. 15-32, 2009, DOI:10.3970/cmc.2009.011.015

    Abstract Motivated by the evolutionary and dissipative properties of parabolic type partial differential equation (PDE), Liu (2008a) has proposed a natural and mathematically equivalent approach by transforming the quasilinear elliptic PDE into a parabolic one. However, the above paper only considered a rectangular domain in the plane, and did not treat the difficulty arisen from the quasilinear PDE defined in an arbitrary plane domain. In this paper we propose a new technique of internal and boundary residuals in a fictitious rectangular domain, which are driving forces for the ordinary differential equations based on the Fictitious Time Integration Method (FTIM). Several numerical… More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method for Solving Delay Ordinary Differential Equations

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 97-116, 2009, DOI:10.3970/cmc.2009.010.097

    Abstract A new numerical method is proposed for solving the delay ordinary differential equations (DODEs) under multiple time-varying delays or state-dependent delays. The finite difference scheme is used to approximate the ODEs, which together with the initial conditions constitute a system of nonlinear algebraic equations (NAEs). Then, a Fictitious Time Integration Method (FTIM) is used to solve these NAEs. Numerical examples confirm that the present approach is highly accurate and efficient with a fast convergence. More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Multiple Dynamic Crack Branching Phenomena

    T. Nishioka1, S. Tchouikov1, T. Fujimoto1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 147-154, 2006, DOI:10.3970/cmc.2006.003.147

    Abstract In this study, phenomena of multiple branching of dynamically propagating crack are investigated numerically. The complicated paths of cracks propagating in a material are simulated by moving finite element method based on Delaunay automatic triangulation (MFEM BODAT), which was extended for such problems. For evaluation of fracture parameters for propagating and branching cracks switching method of the path independent dynamic J integral was used. Using these techniques the generation phase simulation of multiple dynamic crack branching was performed. Various dynamic fracture parameters, which are almost impossible to obtain by experimental technique alone, were accurately evaluated. More >

  • Open Access

    ARTICLE

    A Meshless Approach Based upon Radial Basis Function Hermite Collocation Method for Predicting the Cooling and the Freezing Times of Foods

    A. La Rocca1, H. Power1, V. La Rocca2, M. Morale2

    CMC-Computers, Materials & Continua, Vol.2, No.4, pp. 239-250, 2005, DOI:10.3970/cmc.2005.002.239

    Abstract This work presents a meshless numerical scheme for the solution of time dependent non linear heat transfer problems in terms of a radial basis function Hermite collocation approach. The proposed scheme is applied to foodstuff's samples during freezing process; evaluation of the time evolution of the temperature profile along the sample, as well as at the core, is carried out. The moving phase-change zone is identified in the domain and plotted at several timesteps. The robustness of the proposed scheme is tested by a comparison of the obtained numerical results with those found using a Finite Volume Method and with… More >

  • Open Access

    ARTICLE

    Role of Coupling Terms in Constitutive Relationships of Magnetostrictive Materials

    D. P. Ghosh1, S. Gopalakrishnan2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 213-228, 2004, DOI:10.3970/cmc.2004.001.213

    Abstract Anhysteretic, coupled, linear and nonlinear constitutive relationship for magnetostrictive material is studied in this paper. Constitutive relationships of magnetostrictive material are represented through two equations, one for actuation and other for sensing, both of which are coupled through magneto-mechanical coefficient. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In linear-coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magneto-elastic constant are assumed as constant. In nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and mechanical domain using two nonlinear curves, namely… More >

Displaying 1281-1290 on page 129 of 1286. Per Page