Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,284)
  • Open Access

    ARTICLE

    A Fault-Tolerant Mobility-Aware Caching Method in Edge Computing

    Yong Ma1, Han Zhao2, Kunyin Guo3,*, Yunni Xia3,*, Xu Wang4, Xianhua Niu5, Dongge Zhu6, Yumin Dong7

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 907-927, 2024, DOI:10.32604/cmes.2024.048759

    Abstract Mobile Edge Computing (MEC) is a technology designed for the on-demand provisioning of computing and storage services, strategically positioned close to users. In the MEC environment, frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery, ultimately enhancing the quality of the user experience. However, due to the typical placement of edge devices and nodes at the network’s periphery, these components may face various potential fault tolerance challenges, including network instability, device failures, and resource constraints. Considering the dynamic nature of MEC, making high-quality content caching decisions for real-time mobile applications, especially… More >

  • Open Access

    ARTICLE

    Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction

    Chengbao Hu1,2,3, Shilin Gong4,*, Bin Chen1,2,3, Zhongling Zong4, Xingwang Bao5, Xiaojian Ru5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 997-1015, 2024, DOI:10.32604/cmes.2024.048640

    Abstract Strain localization frequently occurs in cohesive materials with friction (e.g., composites, soils, rocks) and is widely recognized as a fundamental cause of progressive structural failure. Nonetheless, achieving high-fidelity simulation for this issue, particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones, remains significantly constrained. In response, this study introduces an integrated algorithm within the finite element framework, merging a coupled cohesive zone model (CZM) with the nonlinear augmented finite element method (N-AFEM). The coupled CZM comprehensively describes tension-compression and compression-shear failure behaviors in cohesive, frictional materials, while the N-AFEM allows nonlinear coupled intra-element discontinuities without necessitating extra nodes or… More >

  • Open Access

    ARTICLE

    Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model

    Kai Wang1, Biao He2,*, Pijush Samui3, Jian Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 229-253, 2024, DOI:10.32604/cmes.2024.047569

    Abstract Rock bursts represent a formidable challenge in underground engineering, posing substantial risks to both infrastructure and human safety. These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock, leading to severe seismic events and structural damage. Therefore, the development of reliable prediction models for rock bursts is paramount to mitigating these hazards. This study aims to propose a tree-based model—a Light Gradient Boosting Machine (LightGBM)—to predict the intensity of rock bursts in underground engineering. 322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset, which serves… More >

  • Open Access

    ARTICLE

    Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms

    Junjie Zhao, Diyuan Li*, Jingtai Jiang, Pingkuang Luo

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 275-304, 2024, DOI:10.32604/cmes.2024.046960

    Abstract Traditional laboratory tests for measuring rock uniaxial compressive strength (UCS) are tedious and time-consuming. There is a pressing need for more effective methods to determine rock UCS, especially in deep mining environments under high in-situ stress. Thus, this study aims to develop an advanced model for predicting the UCS of rock material in deep mining environments by combining three boosting-based machine learning methods with four optimization algorithms. For this purpose, the Lead-Zinc mine in Southwest China is considered as the case study. Rock density, P-wave velocity, and point load strength index are used as input variables, and UCS is regarded… More > Graphic Abstract

    Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms

  • Open Access

    ARTICLE

    Relationships among Sedentary Time, Electronic Product Addiction, and Depression in Adolescents during the COVID-19 Epidemic: A Cross-Lagged Study

    Feng Sheng1,*, Chen Kong2, Chao Li3

    International Journal of Mental Health Promotion, Vol.26, No.3, pp. 221-228, 2024, DOI:10.32604/ijmhp.2024.030209

    Abstract Objective: This study was conducted to explore the relationships among sedentary behavior (SB), electronic product addiction (EPA), and depression (D) in adolescents during the COVID-19 epidemic. Methods: A total of 604 adolescents (including 309 girls and 295 boys aged 12–18) were selected from Qufu City, Shandong Province, China for three rounds of investigation. The model was constructed using AMOS 23.0 software, and cross-lagged analysis was conducted. Results: SB at T1 can significantly positively predict SB and EPA at T2 (p < 0.05). EPA at T1 can significantly positively predict SB and D at T2 (p < 0.05). Physical activity level… More >

  • Open Access

    ARTICLE

    Application of Machine Learning For Prediction Dental Material Wear

    ABHIJEET SURYAWANSHI1, NIRANJANA BEHERA2,*

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 305-316, 2023, DOI:10.32381/JPM.2023.40.3-4.11

    Abstract Resin composites are commonly applied as the material for dental restoration. Wear of these materials is a major issue. In this study specimens made of dental composite materials were subjected to an in-vitro test in a pin-on-disc tribometer. Four different dental composite materials applied in the experiment were soaked in a solution of chewing tobacco for certain days before being removed and put through a wear test. Subsequently, four different machine learning (ML) algorithms (AdaBoost, CatBoost, Gradient Boosting, Random Forest) were implemented for developing models for the prediction of wear of dental materials. AdaBoost, CatBoost, Gradient Boosting and Random Forest… More >

  • Open Access

    ARTICLE

    Interface and Friction Properties of Copper-embedded Polyethylene Terephthalate Filament

    FOUED KHOFFI1,*, OMAR HARZALLAH2, JEAN YVES DREAN2

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 59-69, 2023, DOI:10.32381/JPM.2023.40.1-2.5

    Abstract The aim of this study is to analyze the interfacial and the frictional properties of copper (Cu) reinforced polyethylene terephthalate (PET) filament. This Cu-Embedded PET filament will be used as an information transmitter. This filament was prepared by a co-extrusion process. Mechanical properties of these filaments have been quantified by tensile and pull-out analyses. It is shown that the mechanical properties of composite filament were improved by adding the copper filament (from 0.82 to 1.2 GPa). The results of the pull-out test revealed some adhesion between the copper and the PET despite the existence of a slippage of the copper… More >

  • Open Access

    ARTICLE

    Federated Machine Learning Based Fetal Health Prediction Empowered with Bio-Signal Cardiotocography

    Muhammad Umar Nasir1, Omar Kassem Khalil2, Karamath Ateeq3, Bassam SaleemAllah Almogadwy4, Muhammad Adnan Khan5, Muhammad Hasnain Azam6, Khan Muhammad Adnan7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3303-3321, 2024, DOI:10.32604/cmc.2024.048035

    Abstract Cardiotocography measures the fetal heart rate in the fetus during pregnancy to ensure physical health because cardiotocography gives data about fetal heart rate and uterine shrinkages which is very beneficial to detect whether the fetus is normal or suspect or pathologic. Various cardiotocography measures infer wrongly and give wrong predictions because of human error. The traditional way of reading the cardiotocography measures is the time taken and belongs to numerous human errors as well. Fetal condition is very important to measure at numerous stages and give proper medications to the fetus for its well-being. In the current period Machine learning… More >

  • Open Access

    ARTICLE

    TSCND: Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting

    Haoran Huang, Weiting Chen*, Zheming Fan

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3665-3681, 2024, DOI:10.32604/cmc.2024.048008

    Abstract Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose… More >

  • Open Access

    ARTICLE

    An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction

    Duy Quang Tran1, Huy Q. Tran2,*, Minh Van Nguyen3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3585-3602, 2024, DOI:10.32604/cmc.2024.047760

    Abstract With the advancement of artificial intelligence, traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality. Traffic volume is an influential parameter for planning and operating traffic structures. This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems. A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process. The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships. Firstly, a dataset for… More >

Displaying 11-20 on page 2 of 1284. Per Page