Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (367)
  • Open Access

    ARTICLE

    An Investigation of Metal 3D Spheroidal Resonators Using a Body of Revolution Approach

    A. Vukovic1, P. Sewell1, T. M. Benson1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.2, pp. 171-190, 2010, DOI:10.3970/cmes.2010.055.171

    Abstract A fast and accurate method is developed for the analysis of a class of metal three-dimensional resonators with rotational symmetry. The analysis is formulated using the Body of Revolution approach and the Method of Analytical Regularization. This development is motivated by the need for three-dimensional analytical solvers that could enable fast and accurate analysis of photonic resonant structures which support very high Q whispering gallery modes and which are computationally challenging for numerical simulations. The paper outlines the formulation of the method and demonstrates the stability and the source of computation errors of the method. As a practical illustration, the… More >

  • Open Access

    ARTICLE

    Numerical Characterization of Porous Solids and Performance Evaluation of Theoretical Models via the Precorrected-FFT Accelerated BEM

    Z. Y. Yan1,2, J. Zhang1, W. Ye1, T.X. Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.1, pp. 33-60, 2010, DOI:10.3970/cmes.2010.055.033

    Abstract An 3-D precorrected-FFT accelerated BEM approach for the linear elastic analysis of porous solids with randomly distributed pores of arbitrary shape and size is described in this paper. Both the upper bound and the lower bound of elastic properties of solids with spherical pores are obtained using the developed fast BEM code. Effects of porosity and pore shape on the elastic properties are investigated. The performance of several theoretical models is evaluated by comparing the theoretical predictions with the numerical results. It is found that for porous solids with spherical pores, the performances of the generalized self-consistent method and Mori-Tanaka… More >

  • Open Access

    ARTICLE

    Interface Crack Problems in Anisotropic Solids Analyzed by the MLPG

    J. Sladek1, V. Sladek1, M. Wünsche2, Ch. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.2, pp. 223-252, 2009, DOI:10.3970/cmes.2009.054.223

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed, to solve the interface crack problem between two dissimilar anisotropic elastic solids. Both stationary and transient mechanical and thermal loads are considered for two-dimensional (2-D) problems in this paper. A Heaviside step function as the test functions is applied in the weak-form to derive local integral equations. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variations of the displacements and temperature are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains… More >

  • Open Access

    ARTICLE

    An Iterative Time-Domain Algorithm for Acoustic-Elastodynamic Coupled Analysis Considering Meshless Local Petrov-Galerkin Formulations

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.2, pp. 201-222, 2009, DOI:10.3970/cmes.2009.054.201

    Abstract In this work, meshless methods based on the local Petrov-Galerkin approach are employed for the time-domain analysis of interacting fluid and solid systems. For the spatial discretization of the acoustic fluid and elastodynamic solid sub-domains involved in the coupled analyses, MLPG formulations adopting Gaussian weight functions as test functions are considered, as well as the moving least square method is used to approximate the incognita fields. For time discretization, the Houbolt's method is adopted. The fluid-solid coupled analysis is accomplished by an iterative algorithm. In this iterative approach, each sub-domain of the global model is analysed independently (as an uncoupled… More >

  • Open Access

    ARTICLE

    Slow Rotation of an Axisymmetric Slip Particle about Its Axis of Revolution

    Yi W. Wan1, Huan J. Keh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 73-94, 2009, DOI:10.3970/cmes.2009.053.073

    Abstract The problem of the rotation of a rigid particle of revolution about its axis in a viscous fluid is studied theoretically in the steady limit of low Reynolds number. The fluid is allowed to slip at the surface of the particle. A singularity method based on the principle of distribution of a set of spherical singularities along the axis of revolution within a prolate particle or on the fundamental plane within an oblate particle is used to find the general solution for the fluid velocity field that satisfies the boundary condition at infinity. The slip condition on the surface of… More >

  • Open Access

    ARTICLE

    Elastic analysis in 3D anisotropic functionally graded solids by the MLPG

    J. Sladek1, V. Sladek1, P. Solek2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.3, pp. 223-252, 2009, DOI:10.3970/cmes.2009.043.223

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in 3-D continuously non-homogeneous anisotropic bodies. Functionally graded materials (FGM) are multi-phase materials with the phase volume fractions varying gradually in space, in a pre-determined profile. The Heaviside step function is used as the test functions in the local weak form resulting into the derived local integral equations (LIEs). For transient elastodynamic problems either the Laplace transform or the time difference techniques are applied. Nodal points are randomly distributed in the 3D analyzed domain and each node is surrounded by a spherical… More >

  • Open Access

    ARTICLE

    Stress Analysis of 3D Generally Anisotropic Elastic Solids Using the Boundary Element Method

    C. L. Tan1, Y.C. Shiah2, C.W. Lin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.3, pp. 195-214, 2009, DOI:10.3970/cmes.2009.041.195

    Abstract The explicit, closed-form expressions of the Green's functions for generally anisotropic elastic solids in three-dimensions that have been derived using Stroh's formalism are employed in a formulation of the boundary element method (BEM). Unlike several other existing schemes, the evaluation of these fundamental solutions does not require further numerical integration in the BEM algorithm; they have surprisingly not been implemented previously. Three numerical examples are presented to demonstrate the veracity of the implementation and the general applicability of the BEM for the 3D elastic stress analysis of generally anisotropic solids. The results are compared with known solutions in the literature… More >

  • Open Access

    ARTICLE

    An automated approach for solution based mesh adaptation to enhance numerical accuracy for a given number of grid cells Applied to steady flow on hexahedral grids

    Peter Lucas1, Alexander H. van Zuijlen1, Hester Bijl1

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.2, pp. 147-176, 2009, DOI:10.3970/cmes.2009.041.147

    Abstract Mesh adaptation is a fairly established tool to obtain numerically accurate solutions for flow problems. Computational efficiency is, however, not always guaranteed for the adaptation strategies found in literature. Typically excessive mesh growth diminishes the potential efficiency gain. This paper, therefore, extends the strategy proposed by [Aftosmis and Berger (2002)] to compute the refinement threshold. The extended strategy computes the refinement threshold based on a user desired number of grid cells and adaptations, thereby ensuring high computational efficiency. Because our main interest is flow around wind turbines, the adaptation strategy has been optimized for flow around wind turbine airfoils. The… More >

  • Open Access

    ARTICLE

    A boundary element formulation for incremental nonlinear elastic deformation of compressible solids

    Sergia Colli1, Massimiliano Gei1, Davide Bigoni1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.1, pp. 29-62, 2009, DOI:10.3970/cmes.2009.040.029

    Abstract Incremental plane strain deformations superimposed upon a uniformly stressed and deformed nonlinear elastic (compressible) body are treated by developing {\it ad hoc} boundary integral equations that, discretized, lead to a novel boundary element technique. The approach is a generalization to compressible elasticity of results obtained by Brun, Capuani, and Bigoni (2003, Comput. Methods Appl. Mech. Engrg. 192, 2461-2479), and is based on a Green's function here obtained through the plane-wave expansion method. New expressions for Green's tractions are determined, where singular terms are solved in closed form, a feature permitting the development of a optimized numerical code. An application of… More >

  • Open Access

    ARTICLE

    Analysis of Transient Heat Conduction in 3D Anisotropic Functionally Graded Solids, by the MLPG Method

    J. Sladek1, V. Sladek1, C.L. Tan2, S.N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.3, pp. 161-174, 2008, DOI:10.3970/cmes.2008.032.161

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for the solution of steady-state and transient heat conduction problems in a continuously non-homogeneous anisotropic medium. The Laplace transform is used to treat the time dependence of the variables for transient problems. The analyzed domain is covered by small subdomains with a simple geometry. A weak formulation for the set of governing equations is transformed into local integral equations on local subdomains by using a unit test function. Nodal points are randomly distributed in the 3D analyzed domain and each node is surrounded by a spherical subdomain to which… More >

Displaying 311-320 on page 32 of 367. Per Page