Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,885)
  • Open Access

    ARTICLE

    Simulation Analysis of the Extrusion Process for Complex Cross-Sectional Profiles of Ultra-High Strength Aluminum Alloy

    Tianxia Zou1,*, Yilin Sun2, Fuhao Fan1, Zhen Zheng1, Yanjin Xu2, Baoshuai Han2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074121 - 10 February 2026

    Abstract Ultra-high-strength aluminum alloy profile is an ideal choice for aerospace structural materials due to its excellent specific strength and corrosion resistance. However, issues such as uneven metal flow, stress concentration, and forming defects are prone to occur during their extrusion. This study focuses on an Al-Zn-Mg-Cu ultra-high-strength aluminum alloy profile with a double-U, multi-cavity thin-walled structure. Firstly, hot compression experiments were conducted at temperatures of 350°C, 400°C, and 450°C, with strain rates of 0.01 and 1.0 s−1, to investigate the plastic deformation behavior of the material. Subsequently, a 3D coupled thermo-mechanical extrusion simulation model was established… More >

  • Open Access

    ARTICLE

    Computer Simulation and Experimental Approach in the Investigation of Deformation and Fracture of TPMS Structures Manufactured by 3D Printing

    Nataliya Kazantseva1,2,*, Nikolai Saharov1, Denis Davydov1,2, Nikolai Popov2, Maxim Il’inikh1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.073078 - 10 February 2026

    Abstract Because of the developed surface of the Triply Periodic Minimum Surface (TPMS) structures, polylactide (PLA) products with a TPMS structure are thought to be promising bio soluble implants with the potential for targeted drug delivery. For implants, mechanical properties are key performance characteristics, so understanding the deformation and failure mechanisms is essential for selecting the appropriate implant structure. The deformation and fracture processes in PLA samples with different interior architectures have been studied through computer simulation and experimental research. Two TPMS topologies, the Schwarz Diamond and Gyroid architectures, were used for the sample construction by… More >

  • Open Access

    ARTICLE

    Dragonfang: An Open-Source Embedded Flight Controller with IMU-Based Stabilization for Quadcopter Applications

    Cosmin Dumitru, Emanuel Pantelimon, Alexandru Guzu, Georgian Nicolae*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072749 - 10 February 2026

    Abstract Unmanned aerial vehicles (UAVs), especially quadcopters, have become indispensable in numerous industrial and scientific applications due to their flexibility, low cost, and capability to operate in dynamic environments. This paper presents a complete design and implementation of a compact autonomous quadcopter capable of trajectory tracking, object detection, precision landing, and real-time telemetry via long-range communication protocols. The system integrates an onboard flight controller running real-time sensor fusion algorithms, a vision-based detection system on a companion single-board computer, and a telemetry unit using Long Range (LoRa) communication. Extensive flight tests were conducted to validate the system’s More >

  • Open Access

    ARTICLE

    Anisotropy of Phase Transformation in Aluminum and Copper under Shock Compression: Atomistic Simulations and Neural Network Model

    Evgenii V. Fomin1,2, Ilya A. Bryukhanov1, Natalya A. Grachyova2, Alexander E. Mayer2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.071952 - 10 February 2026

    Abstract It is well known that aluminum and copper exhibit structural phase transformations in quasi-static and dynamic measurements, including shock wave loading. However, the dependence of phase transformations in a wide range of crystallographic directions of shock loading has not been revealed. In this work, we calculated the shock Hugoniot for aluminum and copper in different crystallographic directions ([100], [110], [111], [112], [102], [114], [123], [134], [221] and [401]) of shock compression using molecular dynamics (MD) simulations. The results showed a high pressure (>160 GPa for Cu and >40 GPa for Al) of the FCC-to-BCC transition.… More >

  • Open Access

    ARTICLE

    Development of Wave Water Simulator for Path Planning of Autonomous Robots in Constrained Environments

    Hui Chen1, Mohammed A. H. Ali1,*, Bushroa Abd Razak1, Zhenya Wang2, Yusoff Nukman1, Shikai Zhang1, Zhiwei Huang1, Ligang Yao3, Mohammad Alkhedher4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.065539 - 10 February 2026

    Abstract Most existing path planning approaches rely on discrete expansions or localized heuristics that can lead to extended re-planning, inefficient detours, and limited adaptability to complex obstacle distributions. These issues are particularly pronounced when navigating cluttered or large-scale environments that demand both global coverage and smooth trajectory generation. To address these challenges, this paper proposes a Wave Water Simulator (WWS) algorithm, leveraging a physically motivated wave equation to achieve inherently smooth, globally consistent path planning. In WWS, wavefront expansions naturally identify safe corridors while seamlessly avoiding local minima, and selective corridor focusing reduces computational overhead in More >

  • Open Access

    ARTICLE

    Tesla-Valve-Based Wind Barriers for Energy Dissipation and Aerodynamic Load Reduction on Trains

    Bo Su1, Mwansa Chambalile1, Shihao He1, Wan Sun2, Enyuan Zhang1, Tong Guo3, Jianming Hao4, Md. Mahbub Alam5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.076681 - 06 February 2026

    Abstract Predicting the precise impacts of climate change on extreme winds remains challenging, yet strong storms are widely expected to occur more frequently in a warming climate. Wind barriers are commonly used on bridges to reduce aerodynamic loads on trains through blocking effects. This study develops a novel wind barrier based on Tesla valves, which not only blocks incoming flow but also dissipates mechanical energy through fluid collision. To demonstrate this energy-dissipation capability, a Tesla plate is placed in a circular duct to examine its influence on pressure drop. Experimental tests and numerical simulations comparing a… More >

  • Open Access

    ARTICLE

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

    Xianke He1, Yuansheng Li1, Hengjie Liao1, Zhehao Jiang1, Meixue Shi1, Zhe Hu2,3, Yaowei Huang2,3, Keliu Wu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074990 - 06 February 2026

    Abstract Weak water-drive offshore reservoirs with complex pore architecture and strong permeability heterogeneity present major challenges, including rapid depletion of formation energy, low waterflood efficiency, and significant lateral and vertical variability in crude oil properties, all of which contribute to limited recovery. To support more effective field development, alternative strategies and a deeper understanding of pore-scale flow behavior are urgently needed. In this work, CT imaging and digital image processing were used to construct a digital rock model representative of the target reservoir. A pore-scale flow model was then developed, and the Volume of Fluid (VOF)… More > Graphic Abstract

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

  • Open Access

    ARTICLE

    Biostimulatory Influence of Commercial Seaweed Extract on Seed Emergence, Seedling Growth, and Vigor of Winter Rice

    Zakia Akter1, Sumona Akter Jannat2, Sheikh Md. Shibly1, Afroza Sultana1, Amdadul Hoque Amran1, Joairia Hossain Faria1, Sabina Yeasmin1, Md. Parvez Anwar1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.075524 - 30 January 2026

    Abstract Seaweed extract contains plant growth regulators and bio-stimulants that enhance plant growth and development. In Bangladesh, winter rice (Boro rice) in the nursery bed often shows poor seed emergence and weak seedling growth due to low temperature. This problem can be addressed by using seaweed extract as a seed priming agent and bio-stimulant. The objective of this study was to evaluate the effectiveness of seaweed extract (Crop Plus) on seed emergence, seedling growth, and vigor of winter rice in the nursery. Two experiments were conducted at Bangladesh Agricultural University using BRRI dhan89. The laboratory experiment… More >

  • Open Access

    ARTICLE

    Exact Computer Modeling of Photovoltaic Sources with Lambert-W Explicit Solvers for Real-Time Emulation and Controller Verification

    Abdulaziz Almalaq1, Ambe Harrison2,*, Ibrahim Alsaleh1, Abdullah Alassaf1, Mashari Alangari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074815 - 29 January 2026

    Abstract We present a computer-modeling framework for photovoltaic (PV) source emulation that preserves the exact single-diode physics while enabling iteration-free, real-time evaluation. We derive two closed-form explicit solvers based on the Lambert W function: a voltage-driven V-Lambert solver for high-fidelity I–V computation and a resistance-driven R-Lambert solver designed for seamless integration in a closed-loop PV emulator. Unlike Taylor-linearized explicit models, our proposed formulation retains the exponential nonlinearity of the PV equations. It employs a numerically stable analytical evaluation that eliminates the need for lookup tables and root-finding, all while maintaining limited computational costs and a small… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Cross-Layer Propagation Mechanisms for Hydraulic Fractures in Deep Coal-Rock Formations

    Zhirong Jin1,*, Xiaorui Hou1, Yanrong Ge1, Tiankui Guo2, Ming Chen2, Shuyi Li2, Tianyu Niu2

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070750 - 27 January 2026

    Abstract Hydraulic fracturing serves as a critical technology for reservoir stimulation in deep coalbed methane (CBM) development, where the mechanical properties of gangue layers exert a significant control on fracture propagation behavior. To address the unclear mechanisms governing fracture penetration across coal-gangue interfaces, this study employs the Continuum-Discontinuum Element Method (CDEM) to simulate and analyze the vertical propagation of hydraulic fractures initiating within coal seams, based on geomechanical parameters derived from the deep Benxi Formation coal seams in the southeastern Ordos Basin. The investigation systematically examines the influence of geological and operational parameters on cross-interfacial fracture… More >

Displaying 1-10 on page 1 of 1885. Per Page