Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,878)
  • Open Access

    ARTICLE

    Modeling of Random Bimodal Structures of Composites (Application to Solid Propellants): I. Simulation of Random Packs

    V.A. Buryachenko1,2, T.L. Jackson2,3, G. Amadio3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 379-416, 2012, DOI:10.3970/cmes.2012.085.379

    Abstract We consider a composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set of multimodal spherical inclusions. This model is used to represent the morphology of heterogeneous solid propellants (HSP) that are widely used in the rocket industry. The Lubachevsky-Stillinger algorithm is used to generate morphological models of HSP with large polydisperse packs of spherical inclusions. We modify the algorithm by proposing a random shaking procedure that leads to the stabilization of a statistical distribution of the simulated structure that is homogeneous, highly mixed, and protocol independent (in sense that the statistical More >

  • Open Access

    ARTICLE

    Simulation of Fragmentation with Material Point Method Based on Gurson Model and Random Failure

    Pengfei Yang1, Yan Liu1, Xiong Zhang1,2, Xu Zhou3, Yuli Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.3, pp. 207-238, 2012, DOI:10.3970/cmes.2012.085.207

    Abstract The material point method is extended to the simulations of fragmentation driven by detonation. A crack modeling scheme based on contact algorithm with material failure process is developed to study the dynamic crack propagation in plastic media. When considering microscopic damage of material, the plastic behavior is described by Gurson model with randomly-distributed initial void of material points. Gurson model can degenerate to J2 plastic theory while the microscopic void is ignored, in which situation the Weibull random failure scheme will be used. Meanwhile, a background-grid-based searching method is proposed to capture the statistical feature More >

  • Open Access

    ARTICLE

    Computation of the Time-Dependent Green's Function for the Longitudinal Vibration of Multi-Step Rod

    V.G.Yakhno1, D. Ozdek2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 157-176, 2012, DOI:10.3970/cmes.2012.085.157

    Abstract The present paper describes computation of the time-dependent Green's function for the equations of longitudinal vibration of a multi-step rod with a piecewise constant varying cross-section. This computation is based on generalization of the Fourier series expansion method. The time-dependent Green's function is derived in the form of the Fourier series. The basic functions of this series are eigenfunctions of an ordinary differential equation with boundary and matching conditions. Constructing the eigenvalues and eigenfunctions of this differential equation and then derivation of the Fourier coefficients of the Green's function are main steps of the method. More >

  • Open Access

    ARTICLE

    Simulation of Bubbly Flow using Different Turbulence Models

    K. Ibrahim1, W.A. El-Askary1,2, A. Balabel1, I.M. Sakr1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.1, pp. 79-104, 2012, DOI:10.3970/cmes.2012.085.079

    Abstract In the present paper, a numerical code has been developed with different turbulence models aiming at simulating turbulent bubbly flows in vertical circular pipes. The mass and momentum conservation equations are used to describe the motion of both phases (water/air). Because of the averaging process additional models are needed for the inter-phase momentum transfer and turbulence quantities for closure. The continuous phase (water) turbulence is represented using different turbulence models namely: two-equation k-ε, extended k-ε and shear-stress transport (SST) k-ω turbulence models which contains additional term to account for the effect of the dispersed phase… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Studies on Heat Transfer and Fluid Flow in a Duct Fitted with Inclined Baffles

    W. A. El-Askary, A. Abdel-Fattah

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 425-458, 2012, DOI:10.3970/cmes.2012.083.425

    Abstract In the present paper, experimental and numerical studies of heat transfer and the frictional head loss of turbulent flow in a duct with a heated upper surface are performed. Four different arrangements are considered (case 1: without baffles, case 2: one perforated baffle on the upper wall and one solid baffle on the lower wall, case 3: one perforated baffle on the upper wall and one perforated baffle on the lower wall and case 4: two perforated baffles on the upper wall). A numerical code developed by the present authors is simultaneously presented including four… More >

  • Open Access

    ARTICLE

    A Mesh Free Method for Simulations of Incompressible Fluid Flow

    M. Chatterjee, A.K. Mahendra, A.Sanyal, G. Gouthaman

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 385-402, 2012, DOI:10.3970/cmes.2012.083.385

    Abstract In this paper, we describe an Incompressible Navier-Stokes (INS) sol -ver using mesh less least square based discretisation on arbitrary distribution of points. The method uses modified Artificial Compressibility Method (ACM) with least square based discretisation. The Solver operates on an arbitrary distribution of points and uses a novel least squares based method that replaces the normal equations approach. This method generates the non-symmetric cross-product matrix by suitable selection of sub stencils such that the matrix is diagonally dominant and well conditioned. The INS solver has been validated with results available in literature for standard More >

  • Open Access

    ARTICLE

    A New Combined Scheme of Discrete Element Method and Meshless Method for Numerical Simulation of Continuum/Discontinuum Transformation

    Li Shan, Ning Cui, Ming Cheng, Kaixin Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 353-384, 2012, DOI:10.3970/cmes.2012.083.353

    Abstract In the present paper, a combined scheme of discrete element method (DEM) and meshless method for numerical simulation of impact problems is proposed. Based on the basic principle of continuum mechanics, an axisymmetric DEM framework is established for modeling the elastoplastic behavior of solid materials. Failure criteria are introduced to model the transformation from a continuum to a discontinuum. The friction force between contact elements is also considered after the failure appears. So our scheme can calculate not only the behavior of continuum and discontinuum, but also the transformation process from a continuum to a More >

  • Open Access

    ARTICLE

    Fluid Flow Simulation Using Particle Method and Its Physics-based Computer Graphics

    Kazuhiko Kakuda1, Shunsuke Obara1, Jun Toyotani1, Mitsuhiko Meguro1, Masakazu Furuichi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.1, pp. 57-72, 2012, DOI:10.3970/cmes.2012.083.057

    Abstract The application of a particle method to incompressible viscous fluid flow problem and its physics-based computer graphics are presented. The method is based on the MPS (Moving Particle Semi-implicit) scheme using logarithmic weighting function to stabilize the spurious oscillatory solutions for the pressure fields which are governed by Poisson equation. The physics-based computer graphics consist of the POV-Ray (Persistence of Vision Raytracer) rendering using marching cubes algorithm as polygonization. The standard MPS scheme is widely utilized as a particle strategy for the free surface flow, the problem of moving boundary, multi-physics/multi-scale ones, and so forth. More >

  • Open Access

    ARTICLE

    Quasi Steady State Effect of Micro Vibration from Two Space Vehicles on Mixture During Thermodiffusion Experiment

    A.H. Ahadi1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 397-422, 2012, DOI:10.3970/fdmp.2012.008.397

    Abstract The numerical simulations of a thermodiffusion experiment in atmospheric pressure binary mixtures of water and isopropanol subject to micro-vibrations at reduced gravity are presented. The vibrations are induced on board ISS and FOTON-M3 due to many different reasons like crew activity, spacecraft docking or operating other experiments, etc. The effects of micro-gravity vibration were investigated in detail on all of the mixture properties. The influences of different cavity sizes as well as different signs of Soret coefficients in the solvent were considered. In this paper, the thermodiffusion experiment was subjected to two different g-jitter vibrations… More >

  • Open Access

    ARTICLE

    Enhanced Heat Transfer by Unipolar Injection of Electric Charges in Differentially Heated Dielectric Liquid Layer

    Walid Hassen1, Mohamed Naceur Borjini2, Habib Ben Aissia1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 381-396, 2012, DOI:10.3970/fdmp.2012.008.381

    Abstract In this work we consider the problem related to the electro-thermo-convection of a dielectric fluid in a rectangular enclosure placed between two electrodes. This layer is subjected simultaneously to the injection of electric charges and to a thermal gradient. The influence of the electric Rayleigh number (200 - 1000) on the structure of the flow, the density of electric charge and heat transfer is investigated. An oscillatory flow is observed and discussed in detail. More >

Displaying 1481-1490 on page 149 of 1878. Per Page