Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,484)
  • Open Access

    ARTICLE

    Numerical Simulation of Detonation and Multi-Material Interface Tracking

    Cheng Wang1, Jianguo Ning1, Tianbao Ma1

    CMC-Computers, Materials & Continua, Vol.22, No.1, pp. 73-96, 2011, DOI:10.3970/cmc.2011.022.073

    Abstract In this paper, we report high resolution simulations using a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method to examine the features of the detonation for gas and condensed explosives. A two-stage chemical reaction model and an ignition and growth model are employed to describe the chemical reaction process for gas and condensed explosives. Based on the Steger-Warming vector flux splitting method, a splitting method is employed when the vector flux does not satisfy the homogeneity property for simulating detonation wave propagation for condensed explosives. The sensibility of flame propagation process and explosion overpressure… More >

  • Open Access

    ARTICLE

    Computation of Dyadic Green's Functions for Electrodynamics in Quasi-Static Approximation with Tensor Conductivity

    V.G.Yakhno1

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 1-16, 2011, DOI:10.3970/cmc.2011.021.001

    Abstract Homogeneous non-dispersive anisotropic materials, characterized by a positive constant permeability and a symmetric positive definite conductivity tensor, are considered in the paper. In these anisotropic materials, the electric and magnetic dyadic Green's functions are defined as electric and magnetic fields arising from impulsive current dipoles and satisfying the time-dependent Maxwell's equations in quasi-static approximation. A new method of deriving these dyadic Green's functions is suggested in the paper. This method consists of several steps: equations for electric and magnetic dyadic Green's functions are written in terms of the Fourier modes; explicit formulae for the Fourier modes of dyadic Green's functions… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fluid-Structure Interaction of LNG Prestressed Storage Tank under Seismic Influence

    X. H. Du1, X. P. Shen1

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 225-242, 2010, DOI:10.3970/cmc.2010.020.225

    Abstract Aim of this paper is to estimate the integrity of liquefied natural gas (LNG) prestressed storage tank under seismic influence. The coupled Eulerian-Lagrangian (CEL) analysis technique is used to simulate the fluid-structure interaction between LNG and the cylinder of LNG prestressed storage tank. The 3-D model of LNG has been dispersed by Eulerian mesh that is different from traditional analysis method which is called the added mass method. Meanwhile, both of the 3-D models of prestressed rebar and concrete structure are dispersed by Lagrangian mesh. Following conclusions are obtained: 1) Natural frequency of the whole model has been obtained by… More >

  • Open Access

    ARTICLE

    Numerical Simulations on Piezoresistivity of CNT/Polymer Based Nanocomposites

    Alamusi1, Y.L. Liu1, N. Hu1,2

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 101-118, 2010, DOI:10.3970/cmc.2010.020.101

    Abstract In this work, we propose a 3 dimensional (3D) numerical model to predict the piezoresistivity behaviors of a nanocomposite material made from an insulating polymer filled by carbon nanotubes (CNTs). This material is very hopeful for its application in highly sensitive strain sensor by measuring its piezoresistivity, i.e., the ratio of resistance change versus applied strain. In this numerical approach, a 3D resistor network model is firstly proposed to predict the electrical conductivity of the nanocomposite with a large amount of randomly dispersed CNTs under the zero strain state. By focusing on the fact that the piezoresistivity of the nanocomposite… More >

  • Open Access

    ARTICLE

    Dynamic Properties of Cortical Bone Tissue: Izod Tests and Numerical Study

    Adel A. Abdel-Wahab1, Angelo Maligno1, Vadim V. Silberschmidt1

    CMC-Computers, Materials & Continua, Vol.19, No.3, pp. 217-238, 2010, DOI:10.3970/cmc.2010.019.217

    Abstract Bone is the principal structural component of a skeleton: it assists the load-bearing framework of a living body. Structural integrity of this component is important; understanding of its mechanical behaviour up to failure is necessary for prevention and diagnostic of trauma. In dynamic events such as traumatic falls, involvement in car crash and sports injuries, bone can be exposed to loads exceeding its structural strength and/or fracture toughness. By developing adequate numerical models to predict and describe its deformation and fracture behaviour up to fracture, a detailed study of reasons for, and ways to prevent or treatment methods of, bone… More >

  • Open Access

    ARTICLE

    Simulation of Dendritic Growth with Different Orientation by Using the Point Automata Method

    A.Z. Lorbiecka1, B. Šarler1,2

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 69-104, 2010, DOI:10.3970/cmc.2010.018.069

    Abstract The aim of this paper is simulation of thermally induced liquid-solid dendritic growth in two dimensions by a coupled deterministic continuum mechanics heat transfer model and a stochastic localized phase change kinetics model that takes into account the undercooling, curvature, kinetic and thermodynamic anisotropy. The stochastic model receives temperature information from the deterministic model and the deterministic model receives the solid fraction information from the stochastic model. The heat transfer model is solved on a regular grid by the standard explicit Finite Difference Method (FDM). The phase-change kinetics model is solved by the classical Cellular Automata (CA) approach and a… More >

  • Open Access

    ARTICLE

    Three Dimensional Nanoscale Abrasive Cutting Simulation and Analysis for Single-Crystal Silicon Workpiece

    Zone-Ching Lin1and Ren-Yuan Wang1

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 247-272, 2010, DOI:10.3970/cmc.2010.016.247

    Abstract The paper establishes a new three-dimensional quasi-steady molecular statics nanoscale abrasive cutting model to investigate the abrasive cutting behavior in the downpressing and abrasive cutting process of a workpiece in chemical mechanical polishing (CMP) process. The downpressing and abrasive cutting process is a continuous process. The abrasive cutting process is done after the single abrasive particle has downpressed and penetrated a workpiece to a certain depth of a workpiece. The paper analyzes the effects of the abrasive particles with different diameters on action force. It also analyzes the action force change of abrasive particles with different diameters on the projected… More >

  • Open Access

    ARTICLE

    Pressure-Force Transformation for Transient Wear Simulation in Two-Dimensional Sliding Contacts

    Chen Y J1,2, Huber N2,3

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 1-24, 2010, DOI:10.3970/cmc.2010.016.001

    Abstract An efficient wear integration algorithm is crucial for the simulation of wear in complex transient contact situations. By rewriting Archard's wear law for two dimensional problems, the wear integration can be replaced by the total contact force. This avoids highly resolved simulations in time and space, so that the proposed method allows a significant acceleration of wear simulations. All quantities, including the average contact velocity, slip rate and total contact force, which are required for the pressure-force transformation, can be determined from geometric and motion analysis, or alternatively, from Finite Element simulations. The proposed CForce method has been implemented into… More >

  • Open Access

    ARTICLE

    Identification of Particle Stimulated Nucleation during Recrystallization of AA 7050

    D.P. Field1, L. Behrens2, J.M. Root1

    CMC-Computers, Materials & Continua, Vol.14, No.3, pp. 171-184, 2009, DOI:10.3970/cmc.2009.014.171

    Abstract Mechanical properties of polycrystalline metals are dependent upon the arrangement of microstructural features in the metal. Recrystallization is an important phenomenon that often occurs during thermo-mechanical processing of metals. This work focuses upon aluminum alloy 7050 and uses crystallographic texture and pair correlation functions of recrystallized grains to characterize the dominance of particle stimulated nucleation in the recrystallization process. The randomization of the recrystallization texture and similar pair correlation functions for the particle distribution and the recrystallization nuclei distribution indicate that particle stimulated nucleation controls the recrystallization behavior in this alloy. More >

  • Open Access

    ARTICLE

    Modeling Intergranular Crack Propagation in Polycrystalline Materials

    M.A.Arafin1, J.A.Szpunar2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 125-140, 2009, DOI:10.3970/cmc.2009.014.125

    Abstract A novel microstructure, texture and grain boundary character based model has been proposed to simulate the intergranular crack propagation behavior in textured polycrystalline materials. The model utilizes the Voronoi algorithm and Monte Carlo simulations to construct the microstructure with desired grain shape factor, takes the texture description of the materials to assign the orientations of the grains, evaluates the grain boundary character based on the misorientation angle - axis calculated from the orientations of the neighboring grains, and takes into account the inclination of grain boundaries with respect to the external stress direction. Markov Chain theory has been applied to… More >

Displaying 1461-1470 on page 147 of 1484. Per Page