Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access

    ARTICLE

    Deep Learning-Based Toolkit Inspection: Object Detection and Segmentation in Assembly Lines

    Arvind Mukundan1,2, Riya Karmakar1, Devansh Gupta3, Hsiang-Chen Wang1,4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069646 - 10 November 2025

    Abstract Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0. Manual inspection of products on assembly lines remains inefficient, prone to errors and lacks consistency, emphasizing the need for a reliable and automated inspection system. Leveraging both object detection and image segmentation approaches, this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning (DL) models. Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images… More >

  • Open Access

    REVIEW

    Deep Learning in Biomedical Image and Signal Processing: A Survey

    Batyrkhan Omarov1,2,3,4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2195-2253, 2025, DOI:10.32604/cmc.2025.064799 - 23 September 2025

    Abstract Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing, enabling automated lesion detection, physiological monitoring, and therapy planning with accuracy that rivals expert performance. This survey reviews the principal model families as convolutional, recurrent, generative, reinforcement, autoencoder, and transfer-learning approaches as emphasising how their architectural choices map to tasks such as segmentation, classification, reconstruction, and anomaly detection. A dedicated treatment of multimodal fusion networks shows how imaging features can be integrated with genomic profiles and clinical records to yield more robust, context-aware predictions. To support clinical adoption, we outline post-hoc explainability More >

  • Open Access

    REVIEW

    Transformers for Multi-Modal Image Analysis in Healthcare

    Sameera V Mohd Sagheer1,*, Meghana K H2, P M Ameer3, Muneer Parayangat4, Mohamed Abbas4

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4259-4297, 2025, DOI:10.32604/cmc.2025.063726 - 30 July 2025

    Abstract Integrating multiple medical imaging techniques, including Magnetic Resonance Imaging (MRI), Computed Tomography, Positron Emission Tomography (PET), and ultrasound, provides a comprehensive view of the patient health status. Each of these methods contributes unique diagnostic insights, enhancing the overall assessment of patient condition. Nevertheless, the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution, data collection methods, and noise levels. While traditional models like Convolutional Neural Networks (CNNs) excel in single-modality tasks, they struggle to handle multi-modal complexities, lacking the capacity to model global relationships. This research presents a novel approach for… More >

  • Open Access

    ARTICLE

    Med-ReLU: A Parameter-Free Hybrid Activation Function for Deep Artificial Neural Network Used in Medical Image Segmentation

    Nawaf Waqas1, Muhammad Islam2,*, Muhammad Yahya3, Shabana Habib4, Mohammed Aloraini2, Sheroz Khan5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3029-3051, 2025, DOI:10.32604/cmc.2025.064660 - 03 July 2025

    Abstract Deep learning (DL), derived from the domain of Artificial Neural Networks (ANN), forms one of the most essential components of modern deep learning algorithms. DL segmentation models rely on layer-by-layer convolution-based feature representation, guided by forward and backward propagation. A critical aspect of this process is the selection of an appropriate activation function (AF) to ensure robust model learning. However, existing activation functions often fail to effectively address the vanishing gradient problem or are complicated by the need for manual parameter tuning. Most current research on activation function design focuses on classification tasks using natural… More >

  • Open Access

    ARTICLE

    SFC_DeepLabv3+: A Lightweight Grape Image Segmentation Method Based on Content-Guided Attention Fusion

    Yuchao Xia, Jing Qiu*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2531-2547, 2025, DOI:10.32604/cmc.2025.064635 - 03 July 2025

    Abstract In recent years, fungal diseases affecting grape crops have attracted significant attention. Currently, the assessment of black rot severity mainly depends on the ratio of lesion area to leaf surface area. However, effectively and accurately segmenting leaf lesions presents considerable challenges. Existing grape leaf lesion segmentation models have several limitations, such as a large number of parameters, long training durations, and limited precision in extracting small lesions and boundary details. To address these issues, we propose an enhanced DeepLabv3+ model incorporating Strip Pooling, Content-Guided Fusion, and Convolutional Block Attention Module (SFC_DeepLabv3+), an enhanced lesion segmentation method based… More >

  • Open Access

    ARTICLE

    Zero-Shot Based Spatial AI Algorithm for Up-to-Date 3D Vision Map Generations in Highly Complex Indoor Environments

    Sehun Lee, Taehoon Kim, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3623-3648, 2025, DOI:10.32604/cmc.2025.063985 - 03 July 2025

    Abstract This paper proposes a zero-shot based spatial recognition AI algorithm by fusing and developing multi-dimensional vision identification technology adapted to the situation in large indoor and underground spaces. With the expansion of large shopping malls and underground urban spaces (UUS), there is an increasing need for new technologies that can quickly identify complex indoor structures and changes such as relocation, remodeling, and construction for the safety and management of citizens through the provision of the up-to-date indoor 3D site maps. The proposed algorithm utilizes data collected by an unmanned robot to create a 3D site… More >

  • Open Access

    ARTICLE

    A Novel Data-Annotated Label Collection and Deep-Learning Based Medical Image Segmentation in Reversible Data Hiding Domain

    Lord Amoah1,2, Jinwei Wang1,2,3,*, Bernard-Marie Onzo1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1635-1660, 2025, DOI:10.32604/cmes.2025.063992 - 30 May 2025

    Abstract Medical image segmentation, i.e., labeling structures of interest in medical images, is crucial for disease diagnosis and treatment in radiology. In reversible data hiding in medical images (RDHMI), segmentation consists of only two regions: the focal and nonfocal regions. The focal region mainly contains information for diagnosis, while the nonfocal region serves as the monochrome background. The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images, and manual segmentation is time-consuming, poorly reproducible, and operator-dependent. Implementing state-of-the-art deep learning (DL) models will facilitate key benefits, but the lack of domain-specific labels… More >

  • Open Access

    ARTICLE

    Multi-Stage Hierarchical Feature Extraction for Efficient 3D Medical Image Segmentation

    Jion Kim, Jayeon Kim, Byeong-Seok Shin*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5429-5443, 2025, DOI:10.32604/cmc.2025.063815 - 19 May 2025

    Abstract Research has been conducted to reduce resource consumption in 3D medical image segmentation for diverse resource-constrained environments. However, decreasing the number of parameters to enhance computational efficiency can also lead to performance degradation. Moreover, these methods face challenges in balancing global and local features, increasing the risk of errors in multi-scale segmentation. This issue is particularly pronounced when segmenting small and complex structures within the human body. To address this problem, we propose a multi-stage hierarchical architecture composed of a detector and a segmentor. The detector extracts regions of interest (ROIs) in a 3D image, while More >

  • Open Access

    ARTICLE

    Advanced Computational Modeling for Brain Tumor Detection: Enhancing Segmentation Accuracy Using ICA-I and ICA-II Techniques

    Abdullah A. Asiri1, Toufique A. Soomro2,3,*, Ahmed Ali4, Faisal Bin Ubaid5, Muhammad Irfan6,*, Khlood M. Mehdar7, Magbool Alelyani8, Mohammed S. Alshuhri9, Ahmad Joman Alghamdi10, Sultan Alamri10

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 255-287, 2025, DOI:10.32604/cmes.2025.061683 - 11 April 2025

    Abstract Global mortality rates are greatly impacted by malignancies of the brain and nervous system. Although, Magnetic Resonance Imaging (MRI) plays a pivotal role in detecting brain tumors; however, manual assessment is time-consuming and susceptible to human error. To address this, we introduce ICA2-SVM, an advanced computational framework integrating Independent Component Analysis Architecture-2 (ICA2) and Support Vector Machine (SVM) for automated tumor segmentation and classification. ICA2 is utilized for image preprocessing and optimization, enhancing MRI consistency and contrast. The Fast-Marching Method (FMM) is employed to delineate tumor regions, followed by SVM for precise classification. Validation on More >

  • Open Access

    ARTICLE

    DMHFR: Decoder with Multi-Head Feature Receptors for Tract Image Segmentation

    Jianuo Huang1,2, Bohan Lai2, Weiye Qiu3, Caixu Xu4, Jie He1,5,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4841-4862, 2025, DOI:10.32604/cmc.2025.059733 - 06 March 2025

    Abstract The self-attention mechanism of Transformers, which captures long-range contextual information, has demonstrated significant potential in image segmentation. However, their ability to learn local, contextual relationships between pixels requires further improvement. Previous methods face challenges in efficiently managing multi-scale features of different granularities from the encoder backbone, leaving room for improvement in their global representation and feature extraction capabilities. To address these challenges, we propose a novel Decoder with Multi-Head Feature Receptors (DMHFR), which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities: coarse, fine-grained, and full set.… More >

Displaying 1-10 on page 1 of 111. Per Page