Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (95)
  • Open Access

    ARTICLE

    An Intelligent Sensor Data Preprocessing Method for OCT Fundus Image Watermarking Using an RCNN

    Jialun Lin1, Qiong Chen1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1549-1561, 2024, DOI:10.32604/cmes.2023.029631 - 17 November 2023

    Abstract Watermarks can provide reliable and secure copyright protection for optical coherence tomography (OCT) fundus images. The effective image segmentation is helpful for promoting OCT image watermarking. However, OCT images have a large amount of low-quality data, which seriously affects the performance of segmentation methods. Therefore, this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network (RCNN). First, the rough-set-based feature discretization module is designed to preprocess the input data. Second, a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable… More >

  • Open Access

    ARTICLE

    Nuclei Segmentation in Histopathology Images Using Structure-Preserving Color Normalization Based Ensemble Deep Learning Frameworks

    Manas Ranjan Prusty1, Rishi Dinesh2, Hariket Sukesh Kumar Sheth2, Alapati Lakshmi Viswanath2, Sandeep Kumar Satapathy2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3077-3094, 2023, DOI:10.32604/cmc.2023.042718 - 26 December 2023

    Abstract This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin (H&E) stained histopathology images. The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols, as well as the segmentation of variable-sized and overlapping nuclei. To this extent, the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks (CNN) architectures as encoder backbones, along with stain normalization and test time… More >

  • Open Access

    ARTICLE

    Mobile-Deep Based PCB Image Segmentation Algorithm Research

    Lisang Liu1, Chengyang Ke1,*, He Lin2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2443-2461, 2023, DOI:10.32604/cmc.2023.042582 - 29 November 2023

    Abstract Aiming at the problems of inaccurate edge segmentation, the hole phenomenon of segmenting large-scale targets, and the slow segmentation speed of printed circuit boards (PCB) in the image segmentation process, a PCB image segmentation model Mobile-Deep based on DeepLabv3+ semantic segmentation framework is proposed. Firstly, the DeepLabv3+ feature extraction network is replaced by the lightweight model MobileNetv2, which effectively reduces the number of model parameters; secondly, for the problem of positive and negative sample imbalance, a new loss function is composed of Focal Loss combined with Dice Loss to solve the category imbalance and improve… More >

  • Open Access

    ARTICLE

    Optimizing Fully Convolutional Encoder-Decoder Network for Segmentation of Diabetic Eye Disease

    Abdul Qadir Khan1, Guangmin Sun1,*, Yu Li1, Anas Bilal2, Malik Abdul Manan1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2481-2504, 2023, DOI:10.32604/cmc.2023.043239 - 29 November 2023

    Abstract In the emerging field of image segmentation, Fully Convolutional Networks (FCNs) have recently become prominent. However, their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters, which can often be a cumbersome manual task. The main aim of this study is to propose a more efficient, less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images. To this end, our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network (FCEDN). The optimization is handled by a novel Genetic Grey Wolf Optimization (G-GWO) algorithm. This algorithm employs the Genetic Algorithm (GA) to… More >

  • Open Access

    ARTICLE

    SC-Net: A New U-Net Network for Hippocampus Segmentation

    Xinyi Xiao, Dongbo Pan*, Jianjun Yuan

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3179-3191, 2023, DOI:10.32604/iasc.2023.041208 - 11 September 2023

    Abstract Neurological disorders like Alzheimer’s disease have a significant impact on the lives and health of the elderly as the aging population continues to grow. Doctors can achieve effective prevention and treatment of Alzheimer’s disease according to the morphological volume of hippocampus. General segmentation techniques frequently fail to produce satisfactory results due to hippocampus’s small size, complex structure, and fuzzy edges. We develop a new SC-Net model using complete brain MRI images to achieve high-precision segmentation of hippocampal structures. The proposed network improves the accuracy of hippocampal structural segmentation by retaining the original location information of More >

  • Open Access

    ARTICLE

    An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation

    Lei Ling1, Lijun Huang2, Jie Wang2, Li Zhang2, Yue Wu2, Yizhang Jiang1, Kaijian Xia2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2353-2379, 2023, DOI:10.32604/cmes.2023.028828 - 03 August 2023

    Abstract In recent years, the soft subspace clustering algorithm has shown good results for high-dimensional data, which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features. The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information, which has strong results for image segmentation, but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center. However, the clustering algorithm is susceptible to the influence of noisy data and reliance on initialized clustering centers and falls into a… More >

  • Open Access

    ARTICLE

    TC-Fuse: A Transformers Fusing CNNs Network for Medical Image Segmentation

    Peng Geng1, Ji Lu1, Ying Zhang2,*, Simin Ma1, Zhanzhong Tang2, Jianhua Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 2001-2023, 2023, DOI:10.32604/cmes.2023.027127 - 26 June 2023

    Abstract In medical image segmentation task, convolutional neural networks (CNNs) are difficult to capture long-range dependencies, but transformers can model the long-range dependencies effectively. However, transformers have a flexible structure and seldom assume the structural bias of input data, so it is difficult for transformers to learn positional encoding of the medical images when using fewer images for training. To solve these problems, a dual branch structure is proposed. In one branch, Mix-Feed-Forward Network (Mix-FFN) and axial attention are adopted to capture long-range dependencies and keep the translation invariance of the model. Mix-FFN whose depth-wise convolutions… More >

  • Open Access

    ARTICLE

    Tight Sandstone Image Augmentation for Image Identification Using Deep Learning

    Dongsheng Li, Chunsheng Li*, Kejia Zhang, Tao Liu, Fang Liu, Jingsong Yin, Mingyue Liao

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1209-1231, 2023, DOI:10.32604/csse.2023.034395 - 26 May 2023

    Abstract Intelligent identification of sandstone slice images using deep learning technology is the development trend of mineral identification, and accurate mineral particle segmentation is the most critical step for intelligent identification. A typical identification model requires many training samples to learn as many distinguishable features as possible. However, limited by the difficulty of data acquisition, the high cost of labeling, and privacy protection, this has led to a sparse sample number and cannot meet the training requirements of deep learning image identification models. In order to increase the number of samples and improve the training effect… More >

  • Open Access

    ARTICLE

    Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation

    Muwei Jian1,2,#,*, Ronghua Wu1,#, Hongyu Chen1, Lanqi Fu3, Chengdong Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 705-716, 2023, DOI:10.32604/cmes.2023.027425 - 23 April 2023

    Abstract In intelligent perception and diagnosis of medical equipment, the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases (e.g., diabetes and hypertension). Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results. To address this challenge, we design a Dual-Branch-UNet framework, which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation. To be more explicit, we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of… More >

  • Open Access

    ARTICLE

    Intelligent Beetle Antenna Search with Deep Transfer Learning Enabled Medical Image Classification Model

    Mohamed Ibrahim Waly*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3159-3174, 2023, DOI:10.32604/csse.2023.035900 - 03 April 2023

    Abstract Recently, computer assisted diagnosis (CAD) model creation has become more dependent on medical picture categorization. It is often used to identify several conditions, including brain disorders, diabetic retinopathy, and skin cancer. Most traditional CAD methods relied on textures, colours, and forms. Because many models are issue-oriented, they need a more substantial capacity to generalize and cannot capture high-level problem domain notions. Recent deep learning (DL) models have been published, providing a practical way to develop models specifically for classifying input medical pictures. This paper offers an intelligent beetle antenna search (IBAS-DTL) method for classifying medical… More >

Displaying 11-20 on page 2 of 95. Per Page