Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    ARNet: Integrating Spatial and Temporal Deep Learning for Robust Action Recognition in Videos

    Hussain Dawood1, Marriam Nawaz2, Tahira Nazir3, Ali Javed2, Abdul Khader Jilani Saudagar4,*, Hatoon S. AlSagri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 429-459, 2025, DOI:10.32604/cmes.2025.066415 - 31 July 2025

    Abstract Reliable human action recognition (HAR) in video sequences is critical for a wide range of applications, such as security surveillance, healthcare monitoring, and human-computer interaction. Several automated systems have been designed for this purpose; however, existing methods often struggle to effectively integrate spatial and temporal information from input samples such as 2-stream networks or 3D convolutional neural networks (CNNs), which limits their accuracy in discriminating numerous human actions. Therefore, this study introduces a novel deep-learning framework called the ARNet, designed for robust HAR. ARNet consists of two main modules, namely, a refined InceptionResNet-V2-based CNN and… More >

  • Open Access

    ARTICLE

    Optimizing CNN Architectures for Face Liveness Detection: Performance, Efficiency, and Generalization across Datasets

    Smita Khairnar1,2, Shilpa Gite1,3,*, Biswajeet Pradhan4,*, Sudeep D. Thepade2,5, Abdullah Alamri6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3677-3707, 2025, DOI:10.32604/cmes.2025.058855 - 30 June 2025

    Abstract Face liveness detection is essential for securing biometric authentication systems against spoofing attacks, including printed photos, replay videos, and 3D masks. This study systematically evaluates pre-trained CNN models— DenseNet201, VGG16, InceptionV3, ResNet50, VGG19, MobileNetV2, Xception, and InceptionResNetV2—leveraging transfer learning and fine-tuning to enhance liveness detection performance. The models were trained and tested on NUAA and Replay-Attack datasets, with cross-dataset generalization validated on SiW-MV2 to assess real-world adaptability. Performance was evaluated using accuracy, precision, recall, FAR, FRR, HTER, and specialized spoof detection metrics (APCER, NPCER, ACER). Fine-tuning significantly improved detection accuracy, with DenseNet201 achieving the highest… More > Graphic Abstract

    Optimizing CNN Architectures for Face Liveness Detection: Performance, Efficiency, and Generalization across Datasets

  • Open Access

    ARTICLE

    Numerical Analysis of Rotor Blade Angle Influence on Stall Onset in an Axial Fan

    Yongsheng Wang1,2, Xiangwu Lu1, Wei Yuan1,*, Lei Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1505-1528, 2025, DOI:10.32604/fdmp.2025.061052 - 30 June 2025

    Abstract This study explores the influence of rotor blade angle on stall inception in an axial fan by means of numerical simulations grounded in the Reynolds-Averaged Navier-Stokes (RANS) equations and the Realizable k-ε turbulence model. By analyzing the temporal behavior of the outlet static pressure, along with the propagation velocity of stall inception, the research identifies distinct patterns in the development of stall. The results reveal that stall inception originates in the second rotor impeller. At a blade angle of 27°, the stall inception follows a modal wave pattern, while in all other cases, it assumes the More >

  • Open Access

    ARTICLE

    A Deep Learning Approach to Classification of Diseases in Date Palm Leaves

    Sameera V Mohd Sagheer1, Orwel P V2, P M Ameer3, Amal BaQais4, Shaeen Kalathil5,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1329-1349, 2025, DOI:10.32604/cmc.2025.063961 - 09 June 2025

    Abstract The precise identification of date palm tree diseases is essential for maintaining agricultural productivity and promoting sustainable farming methods. Conventional approaches rely on visual examination by experts to detect infected palm leaves, which is time intensive and susceptible to mistakes. This study proposes an automated leaf classification system that uses deep learning algorithms to identify and categorize diseases in date palm tree leaves with high precision and dependability. The system leverages pretrained convolutional neural network architectures (InceptionV3, DenseNet, and MobileNet) to extract and examine leaf characteristics for classification purposes. A publicly accessible dataset comprising multiple… More >

  • Open Access

    ARTICLE

    Study on Eye Gaze Detection Using Deep Transfer Learning Approaches

    Vidivelli Soundararajan*, Manikandan Ramachandran*, Srivatsan Vinodh Kumar

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5259-5277, 2025, DOI:10.32604/cmc.2025.063059 - 19 May 2025

    Abstract Many applications, including security systems, medical diagnostics, and human-computer interfaces, depend on eye gaze recognition. However, due to factors including individual variations, occlusions, and shifting illumination conditions, real-world scenarios continue to provide difficulties for accurate and consistent eye gaze recognition. This work is aimed at investigating the potential benefits of employing transfer learning to improve eye gaze detection ability and efficiency. Transfer learning is the process of fine-tuning pre-trained models on smaller, domain-specific datasets after they have been trained on larger datasets. We study several transfer learning algorithms and evaluate their effectiveness on eye gaze… More >

  • Open Access

    ARTICLE

    TSMS-InceptionNeXt: A Framework for Image-Based Combustion State Recognition in Counterflow Burners via Feature Extraction Optimization

    Huiling Yu1, Xibei Jia2, Yongfeng Niu1, Yizhuo Zhang1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4329-4352, 2025, DOI:10.32604/cmc.2025.061882 - 19 May 2025

    Abstract The counterflow burner is a combustion device used for research on combustion. By utilizing deep convolutional models to identify the combustion state of a counterflow burner through visible flame images, it facilitates the optimization of the combustion process and enhances combustion efficiency. Among existing deep convolutional models, InceptionNeXt is a deep learning architecture that integrates the ideas of the Inception series and ConvNeXt. It has garnered significant attention for its computational efficiency, remarkable model accuracy, and exceptional feature extraction capabilities. However, since this model still has limitations in the combustion state recognition task, we propose… More >

  • Open Access

    ARTICLE

    Enhanced Kinship Verification through Ear Images: A Comparative Study of CNNs, Attention Mechanisms, and MLP Mixer Models

    Thien-Tan Cao, Huu-Thanh Duong, Viet-Tuan Le, Hau Nguyen Trung, Vinh Truong Hoang, Kiet Tran-Trung*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4373-4391, 2025, DOI:10.32604/cmc.2025.061583 - 19 May 2025

    Abstract Kinship verification is a key biometric recognition task that determines biological relationships based on physical features. Traditional methods predominantly use facial recognition, leveraging established techniques and extensive datasets. However, recent research has highlighted ear recognition as a promising alternative, offering advantages in robustness against variations in facial expressions, aging, and occlusions. Despite its potential, a significant challenge in ear-based kinship verification is the lack of large-scale datasets necessary for training deep learning models effectively. To address this challenge, we introduce the EarKinshipVN dataset, a novel and extensive collection of ear images designed specifically for kinship… More >

  • Open Access

    ARTICLE

    MARIE: One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms

    Diana Abi-Nader1, Hassan Harb2, Ali Jaber1, Ali Mansour3, Christophe Osswald3, Nour Mostafa2,*, Chamseddine Zaki2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 279-298, 2025, DOI:10.32604/cmes.2024.056816 - 17 December 2024

    Abstract Security and safety remain paramount concerns for both governments and individuals worldwide. In today’s context, the frequency of crimes and terrorist attacks is alarmingly increasing, becoming increasingly intolerable to society. Consequently, there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces, thereby preventing potential attacks or violent incidents. Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection, particularly in identifying firearms. This paper introduces a novel automatic firearm detection surveillance system, utilizing a one-stage detection… More >

  • Open Access

    ARTICLE

    A Deep Transfer Learning Approach for Addressing Yaw Pose Variation to Improve Face Recognition Performance

    M. Jayasree1, K. A. Sunitha2,*, A. Brindha1, Punna Rajasekhar3, G. Aravamuthan3, G. Joselin Retnakumar1

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 745-764, 2024, DOI:10.32604/iasc.2024.052983 - 06 September 2024

    Abstract Identifying faces in non-frontal poses presents a significant challenge for face recognition (FR) systems. In this study, we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0° to ±90°. We initially selected the most suitable feature vector size by integrating the Dlib, FaceNet (Inception-v2), and “Support Vector Machines (SVM)” + “K-nearest neighbors (KNN)” algorithms. To train and evaluate this feature vector, we used two datasets: the “Labeled Faces in the Wild (LFW)” benchmark data and the “Robust… More >

  • Open Access

    ARTICLE

    Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI

    Saad Akbar1,2, Humera Azam1, Sulaiman Sulmi Almutairi3,*, Omar Alqahtani4, Habib Shah4, Aliya Aleryani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1075-1104, 2024, DOI:10.32604/cmc.2024.050913 - 18 July 2024

    Abstract The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools. In this article, a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19, pneumonia, and normal conditions in chest X-ray images (CXIs) is proposed coupled with Explainable Artificial Intelligence (XAI). Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3, VGG16, and VGG19 that excel in the task of feature extraction. The methodology is further enhanced by the inclusion of the t-SNE (t-Distributed… More >

Displaying 1-10 on page 1 of 44. Per Page