Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    An Efficient Adaptive Network-Based Fuzzy Inference System with Mosquito Host-Seeking For Facial Expression Recognition

    M. Carmel Sobia1, A. Abudhahir2

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 869-881, 2018, DOI:10.31209/2018.100000014

    Abstract In this paper, an efficient facial expression recognition system using ANFIS-MHS (Adaptive Network-based Fuzzy Inference System with Mosquito Host-Seeking) has been proposed. The features were extracted using MLDA (Modified Linear Discriminant Analysis) and then the optimized parameters are computed by using mGSO (modified Glow-worm Swarm Optimization).The proposed system recognizes the facial expressions using ANFIS-MHS. The experimental results demonstrate that the proposed technique is performed better than existing classification schemes like HAKELM (Hybridization of Adaptive Kernel based Extreme Learning Machine), Support Vector Machine (SVM) and Principal Component Analysis (PCA). The proposed approach is implemented in MATLAB. More >

  • Open Access

    ARTICLE

    Auxiliary Diagnosis Based on the Knowledge Graph of TCM Syndrome

    Yonghong Xie1, 3, Liangyuan Hu1, 3, Xingxing Chen2, 3, Jim Feng4, Dezheng Zhang1, 3, *

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 481-494, 2020, DOI:10.32604/cmc.2020.010297

    Abstract As one of the most valuable assets in China, traditional medicine has a long history and contains pieces of knowledge. The diagnosis and treatment of Traditional Chinese Medicine (TCM) has benefited from the natural language processing technology. This paper proposes a knowledge-based syndrome reasoning method in computerassisted diagnosis. This method is based on the established knowledge graph of TCM and this paper introduces the reinforcement learning algorithm to mine the hidden relationship among the entities and obtain the reasoning path. According to this reasoning path, we could infer the path from the symptoms to the syndrome and get all possibilities… More >

  • Open Access

    ARTICLE

    Privacy Protection Algorithm for the Internet of Vehicles Based on Local Differential Privacy and Game Model

    Wenxi Han1, 2, Mingzhi Cheng3, *, Min Lei1, 2, Hanwen Xu2, Yu Yang1, 2, Lei Qian4

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 1025-1038, 2020, DOI:10.32604/cmc.2020.09815

    Abstract In recent years, with the continuous advancement of the intelligent process of the Internet of Vehicles (IoV), the problem of privacy leakage in IoV has become increasingly prominent. The research on the privacy protection of the IoV has become the focus of the society. This paper analyzes the advantages and disadvantages of the existing location privacy protection system structure and algorithms, proposes a privacy protection system structure based on untrusted data collection server, and designs a vehicle location acquisition algorithm based on a local differential privacy and game model. The algorithm first meshes the road network space. Then, the dynamic… More >

  • Open Access

    ARTICLE

    Applying ANN, ANFIS and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2

    Amin Bemani1, Alireza Baghban2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5, 6, 7, Peter Csiba7, Annamaria R. Varkonyi-Koczy5, 7

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1175-1204, 2020, DOI:10.32604/cmc.2020.07723

    Abstract In the present work, a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide. Four different machine learning algorithms of radial basis function, multi-layer perceptron (MLP), artificial neural networks (ANN), least squares support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS) are used to model the solubility of different acids in carbon dioxide based on the temperature, pressure, hydrogen number, carbon number, molecular weight, and the dissociation constant of acid. To evaluate the proposed models, different graphical and statistical analyses, along with novel sensitivity analysis, are carried out.… More >

  • Open Access

    ARTICLE

    Intent Inference Based Trajectory Prediction and Smooth for UAS in Low-Altitude Airspace with Geofence

    Qixi Fu1, Xiaolong Liang1, 2, Jiaqiang Zhang1, *, Xiangyu Fan1, 2

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 417-444, 2020, DOI:10.32604/cmc.2020.07044

    Abstract In order to meet the higher accuracy requirement of trajectory prediction for Unmanned Aircraft System (UAS) in Unmanned Aircraft System Traffic Management (UTM), an Intent Based Trajectory Prediction and Smooth Based on Constrained State-dependent-transition Hybrid Estimation (CSDTHE-IBTPS) algorithm is proposed. Firstly, an intent inference method of UAS is constructed based on the information of ADS-B and geofence system. Moreover, a geofence layering algorithm is proposed. Secondly, the Flight Mode Change Points (FMCP) are used to define the relevant mode transition parameters and design the guard conditions, so as to generate the mode transition probability matrix and establish the continuous state-dependent-transition… More >

  • Open Access

    ARTICLE

    The Exact Inference of Beta Process and Beta Bernoulli Process From Finite Observations

    Yang Cheng1, Dehua Li1,*, Wenbin Jiang 2

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.1, pp. 49-82, 2019, DOI:10.32604/cmes.2019.07657

    Abstract Beta Process is a typical nonparametric Bayesian model. and the Beta Bernoulli Process provides a Bayesian nonparametric prior for models involving collections of binary valued features. Some previous studies considered the Beta Process inference problem by giving the Stick-Breaking sampling method. This paper focuses on analyzing the form of precise probability distribution based on a Stick-Breaking approach, that is, the joint probability distribution is derived from any finite number of observable samples: It not only determines the probability distribution function of the Beta Process with finite observation (represented as a group of number between [0,1]), but also gives the distribution… More >

  • Open Access

    ARTICLE

    Soil Microbial Dynamics Modeling in Fluctuating Ecological Situations by Using Subtractive Clustering and Fuzzy Rule-Based Inference Systems

    Sunil Kr. Jha1, Zulfiqar Ahmad2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.4, pp. 443-459, 2017, DOI:10.3970/cmes.2017.113.443

    Abstract Microbial population and enzyme activities are the significant indicators of soil strength. Soil microbial dynamics characterize microbial population and enzyme activities. The present study explores the development of efficient predictive modeling systems for the estimation of specific soil microbial dynamics, like rock phosphate solubilization, bacterial population, and ACC-deaminase activity. More specifically, optimized subtractive clustering (SC) and Wang and Mendel's (WM) fuzzy inference systems (FIS) have been implemented with the objective to achieve the best estimation accuracy of microbial dynamics. Experimental measurements were performed using controlled pot experiment using minimal salt media with rock phosphate as sole carbon source inoculated with… More >

  • Open Access

    ARTICLE

    Solution of the Inverse Radiative Transfer Problem of Simultaneous Identification of the Optical Thickness and Space-Dependent Albedo Using Bayesian Inference

    D. C. Knupp1,2, A. J. Silva Neto3

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.5, pp. 339-360, 2013, DOI:10.3970/cmes.2013.096.339

    Abstract Inverse radiative transfer problems in heterogeneous participating media applications include determining gas properties in combustion chambers, estimating environmental and atmospheric conditions, and remote sensing, among others. In recent papers the spatially variable single scattering albedo has been estimated by expanding this unknown function as a series of known functions, and then estimating the expansion coefficients with parameter estimation techniques. In the present work we assume that there is no prior information on the functional form of the unknown spatially variable albedo and, making use of the Bayesian approach, we propose the development of a posterior probability density, which is explored… More >

  • Open Access

    ARTICLE

    Analysis of Hydrogen Permeation in Metals by Means of a New Anomalous Diffusion Model and Bayesian Inference

    Marco A.A. Kappel1, Diego C. Knupp1, Roberto P. Domingos1, IvanN. Bastos1

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 13-29, 2015, DOI:10.3970/cmc.2015.049.013

    Abstract This work is aimed at the direct and inverse analysis of hydrogen permeation in steels employing a novel anomalous diffusion model. For the inverse analysis, experimental data for hydrogen permeation in a 13% chromium martensitic stainless steel, available in the literature [Turnbull, Carroll and Ferriss (1989)], was employed within the Bayesian framework for inverse problems. The comparison between the predicted values and the available experimental data demonstrates the feasibility of the new model in adequately describing the physical phenomena occurring in this particular problem. More >

  • Open Access

    ARTICLE

    Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling

    Susom Dutta1, A. Ramach,ra Murthy2, Dookie Kim3, Pijush Samui4

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 157-174, 2017, DOI:10.3970/cmc.2017.053.167

    Abstract In the present scenario, computational modeling has gained much importance for the prediction of the properties of concrete. This paper depicts that how computational intelligence can be applied for the prediction of compressive strength of Self Compacting Concrete (SCC). Three models, namely, Extreme Learning Machine (ELM), Adaptive Neuro Fuzzy Inference System (ANFIS) and Multi Adaptive Regression Spline (MARS) have been employed in the present study for the prediction of compressive strength of self compacting concrete. The contents of cement (c), sand (s), coarse aggregate (a), fly ash (f), water/powder (w/p) ratio and superplasticizer (sp) dosage have been taken as inputs… More >

Displaying 51-60 on page 6 of 60. Per Page