Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Combinational therapy with Myc decoy oligodeoxynucleotides encapsulated in nanocarrier and X-irradiation on breast cancer cells

    BEHROOZ JOHARI1,2,#,*, MILAD PARVINZAD LEILAN1,#, MAHMOUD GHARBAVI3, YOUSEF MORTAZAVI1, ALI SHARAFI2, HAMED REZAEEJAM4

    Oncology Research, Vol.32, No.2, pp. 309-323, 2024, DOI:10.32604/or.2023.043576

    Abstract The Myc gene is the essential oncogene in triple-negative breast cancer (TNBC). This study investigates the synergistic effects of combining Myc decoy oligodeoxynucleotides-encapsulated niosomes-selenium hybrid nanocarriers with X-irradiation exposure on the MDA-MB-468 cell line. Decoy and scramble ODNs for Myc transcription factor were designed and synthesized based on promoter sequences of the Bcl2 gene. The nanocarriers were synthesized by loading Myc ODNs and selenium into chitosan (Chi-Se-DEC), which was then encapsulated in niosome-nanocarriers (NISM@Chi-Se-DEC). FT-IR, DLS, FESEM, and hemolysis tests were applied to confirm its characterization and physicochemical properties. Moreover, cellular uptake, cellular toxicity, apoptosis, cell cycle, and scratch repair… More > Graphic Abstract

    Combinational therapy with Myc decoy oligodeoxynucleotides encapsulated in nanocarrier and X-irradiation on breast cancer cells

  • Open Access

    ARTICLE

    Assessing the Efficacy of Improved Learning in Hourly Global Irradiance Prediction

    Abdennasser Dahmani1, Yamina Ammi2, Nadjem Bailek3,4,*, Alban Kuriqi5,6, Nadhir Al-Ansari7,*, Salah Hanini2, Ilhami Colak8, Laith Abualigah9,10,11,12,13,14, El-Sayed M. El-kenawy15

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2579-2594, 2023, DOI:10.32604/cmc.2023.040625

    Abstract Increasing global energy consumption has become an urgent problem as natural energy sources such as oil, gas, and uranium are rapidly running out. Research into renewable energy sources such as solar energy is being pursued to counter this. Solar energy is one of the most promising renewable energy sources, as it has the potential to meet the world’s energy needs indefinitely. This study aims to develop and evaluate artificial intelligence (AI) models for predicting hourly global irradiation. The hyperparameters were optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton training algorithm and STATISTICA software. Data from two stations in Algeria with different climatic… More >

  • Open Access

    ARTICLE

    MULTICOMPONENT GAS-PARTICLE FLOW AND HEAT/MASS TRANSFER INDUCED BY A LOCALIZED LASER IRRADIATION ON A URETHANE-COATED STAINLESS STEEL SUBSTRATE

    Nazia Afrina, Yijin Maoa, Yuwen Zhanga,*, J. K. Chena, Robin Ritterb, Alan Lampsonb, Jonathan Stohsc

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.7

    Abstract A three-dimensional numerical simulation is conducted for a complex process in a laser-material system, which involves heat and mass transfer in a compressible gaseous phase and chemical reaction during laser irradiation on a urethane paint coated on a stainless steel substrate. A finite volume method (FVM) with a co-located grid mesh that discretizes the entire computational domain is employed to simulate the heating process. The results show that when the top surface of the paint reaches a threshold temperature of 560 K, the polyurethane starts to decompose through chemical reaction. As a result, combustion products CO2, H2O and NO2 are… More >

  • Open Access

    ARTICLE

    Combining Transcriptomics and Metabolomics to Uncover the Effects of High-Energy Lithium-Ion Beam Irradiation on Capsicum annuum L.

    Libo Xie1, Xue Wang1, Luxiang Liu2,*, Chunmei Xu1, Yongdun Xie2, Hongchun Xiong2, Xinchun Han3, Mu Guo1

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 2947-2964, 2023, DOI:10.32604/phyton.2023.042919

    Abstract Hot pepper (Capsicum annuum L.) is consumed as one of the oldest domesticated crops all over the world. Although mutation breeding using radiation has been performed in hot peppers, little is known about the comparative analysis of mutagenic effects at the molecular level by ion beam irradiation. To comprehend the response mechanism of hot pepper to the ion beam, we used a mutant with favorable economic characteristics induced by lithium-ion beam irradiation to investigate the biological effects. The results indicated that the lithium-ion beam had a positive effect on important agronomic traits, particularly yield unit, but had a negligible effect… More >

  • Open Access

    ARTICLE

    Blue LED promotes the chemosensitivity of human hepatoma to Sorafenib by inducing DNA damage

    TONG WANG1,4,#, JINHUAN HONG1,5,#, JIAJIE XIE1,5, QIAN LIU4, JINRUI YUE1,5, XUTING HE1,5, SHIYU GE4, TAO LI4, GUOXIN LIU4, BENZHI CAI1,3,5, LINQIANG LI2,*, YE YUAN1,3,5,*

    BIOCELL, Vol.47, No.8, pp. 1811-1820, 2023, DOI:10.32604/biocell.2023.029120

    Abstract Background: Phototherapies based on sunlight, infrared, ultraviolet, visible, and laser-based treatments present advantages like high curative effects, small invasion, and negligible adverse reactions in cancer treatment. We aimed to explore the potential therapeutic effects of blue light emitting diode (LED) in human hepatoma cells and decipher the underlying cellular and molecular mechanisms. Methods: Wound healing and transwell assays were employed to probe the inhibition of the invasion and migration of hepatocellular carcinoma cells in the presence of blue LED. The sphere-forming test was used to evaluate the effect of LED blue light irradiation on cancer stem cell properties. Immunofluorescence and… More > Graphic Abstract

    Blue LED promotes the chemosensitivity of human hepatoma to Sorafenib by inducing DNA damage

  • Open Access

    ARTICLE

    SURROGATE-BASED OPTIMIZATION OF THERMAL DAMAGE TO LIVING BIOLOGICAL TISSUES BY LASER IRRADIATION

    Nazia Afrina , Yuwen Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-6, 2019, DOI:10.5098/hmt.12.27

    Abstract The surrogate-based analysis and optimization of thermal damage in living biological tissue by laser irradiation are discussed in this paper. Latin Hypercube Sampling (LHS) and Response Surface Model (RSM) are applied to study the surrogate-based optimization of thermal damage in tissue using a generalized dual-phase lag model. Response value of high temperature as a function of input variables and the relationship of maximum temperature and thermal damage as a function of input variables are investigated. Comparisons of SBO model and simulation results for different sample sizes are examined. The results show that every input variable individually has quadratic response to… More >

  • Open Access

    ARTICLE

    Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed

    Neelam Mughees1,2, Mujtaba Hussain Jaffery1, Abdullah Mughees3, Anam Mughees4, Krzysztof Ejsmont5,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6375-6393, 2023, DOI:10.32604/cmc.2023.038564

    Abstract Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked, sequence-to-sequence autoencoder (S2SAE) forecasting model… More >

  • Open Access

    ARTICLE

    KRIGING SURROGATE BASED OPTIMIZATION OF THERMAL DAMAGE TO LIVING BIOLOGICAL TISSUES BY LASER IRRADIATION BASED ON A GENERALIZED DUAL PHASE LAG MODEL

    Nazia Afrina,*, Jonathan Lopez, Juan Ocampo

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-7, 2022, DOI:10.5098/hmt.18.46

    Abstract Large number of numerical computer simulations in engineering places is a serious burden on associated optimization problems nowadays. Kriging Surrogate based optimization (KSBO) becomes standard practice in analyzing expensive and time-consuming simulation. This paper aims to investigate the surrogate based analyze and optimization of thermal damage in living biological tissue by laser irradiation using a generalized duel phase model. The relationships of maximum temperature and thermal damage in living biological tissues of the response with two variables at a time are studied. The result shows that the surrogate model predicted response variables i.e, temperature and thermal damage are in good… More >

  • Open Access

    ARTICLE

    Remarkably Enhanced Photodegradation of Organic Pollutants by NH2-UiO-66/ZnO Composite under Visible-Light Irradiation

    Dehong Teng1,#, Jing Zhang1,#, Xinzhi Luo1, Fei Jing1, Hengwei Wang1, Jing Chen1,* , Chao Yang1, Shaohong Zang1,*, Yingtang Zhou1,2

    Journal of Renewable Materials, Vol.10, No.9, pp. 2378-2391, 2022, DOI:10.32604/jrm.2022.019209

    Abstract Semiconductor photocatalysis is a novel highly efficient and low-cost method for removing organic pollutants from wastewater. However, the photoreduction performance of semiconductors on organic pollutants is limited due to the weak absorption of visible light caused by its wide band gap and low carrier utilization rate resulting from severe electron-holes recombination. In the present study, flower-like NH2-UiO-66 (NU66)/ZnO nanocomposites were prepared using a facile method and exhibited high efficiency under visible light driven photocatalysts. The X-ray diffractometer (XRD), scanning electron microscope (SEM), transmitor electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared samples, indicating that… More > Graphic Abstract

    Remarkably Enhanced Photodegradation of Organic Pollutants by NH<sub>2</sub>-UiO-66/ZnO Composite under Visible-Light Irradiation

  • Open Access

    ARTICLE

    Hybrid Ensemble-Learning Approach for Renewable Energy Resources Evaluation in Algeria

    El-Sayed M. El-Kenawy1,2, Abdelhameed Ibrahim3, Nadjem Bailek4,*, Kada Bouchouicha5, Muhammed A. Hassan6, Basharat Jamil7, Nadhir Al-Ansari8

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5837-5854, 2022, DOI:10.32604/cmc.2022.023257

    Abstract In order to achieve a highly accurate estimation of solar energy resource potential, a novel hybrid ensemble-learning approach, hybridizing Advanced Squirrel-Search Optimization Algorithm (ASSOA) and support vector regression, is utilized to estimate the hourly tilted solar irradiation for selected arid regions in Algeria. Long-term measured meteorological data, including mean-air temperature, relative humidity, wind speed, alongside global horizontal irradiation and extra-terrestrial horizontal irradiance, were obtained for the two cities of Tamanrasset-and-Adrar for two years. Five computational algorithms were considered and analyzed for the suitability of estimation. Further two new algorithms, namely Average Ensemble and Ensemble using support vector regression were developed… More >

Displaying 1-10 on page 1 of 24. Per Page