Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    SURROGATE-BASED OPTIMIZATION OF THERMAL DAMAGE TO LIVING BIOLOGICAL TISSUES BY LASER IRRADIATION

    Nazia Afrina , Yuwen Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-6, 2019, DOI:10.5098/hmt.12.27

    Abstract The surrogate-based analysis and optimization of thermal damage in living biological tissue by laser irradiation are discussed in this paper. Latin Hypercube Sampling (LHS) and Response Surface Model (RSM) are applied to study the surrogate-based optimization of thermal damage in tissue using a generalized dual-phase lag model. Response value of high temperature as a function of input variables and the relationship of maximum temperature and thermal damage as a function of input variables are investigated. Comparisons of SBO model and simulation results for different sample sizes are examined. The results show that every input variable More >

  • Open Access

    ARTICLE

    The Effects of Gamma Irradiation on Molecular Weight, Morphology and Physical Properties of PHBV/Cloisite 30B Bionanocomposites

    Kahina Iggui1,2,*, Mustapha Kaci1, Mohamed Mahlous3, Nicolas Le Moigne4, Anne Bergeret4

    Journal of Renewable Materials, Vol.7, No.9, pp. 807-820, 2019, DOI:10.32604/jrm.2019.06778

    Abstract In this paper, the effects of gamma irradiation on Cast poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV/Cloisite 30B (C30B) (3 wt%) bionanocomposite prepared by melt compounding, were evaluated at various doses, i.e., 5, 15, 20, 50 and 100 kGy at room temperature in air. Changes in molecular weight, morphology and physical properties were investigated. The study showed that the main degradation mechanism occurring in gamma irradiation in both Cast PHBV and C-PHBV/3C30B bionanocomposite is chain scission, responsible for the decrease of molecular weight. Differential scanning calorimetry (DSC) data indicated a regular decrease in crystallization temperature, melting temperature and… More >

  • Open Access

    ARTICLE

    Modeling and Analysis of Global and Diffuse Solar Irradiation Components Using the Satellite Estimation Method of HELIOSAT

    Selmin Ener Rusen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.3, pp. 327-343, 2018, DOI:10.3970/cmes.2018.00159

    Abstract It is very important to determine the daily horizontal global, diffuse and beam irradiations correctly in planning energy systems, in cost analysis, in the atmosphere, and in the productivity evaluations. Besides, the knowledge of accurate solar irradiation is the most important component of the essential climate variables according to the Global Climate Observing System (GCOS) in August 2010. It is known that the changes of these irradiation parameters directly affect our atmosphere and cloud formation processes. Turkey is one of the countries, which has high solar energy potential by reason of its climatic and regional… More >

  • Open Access

    ARTICLE

    Microwave-Assisted Isolation and Acetylation of Inulin from Helianthus Tuberosus L Tubers

    Nadezhda Petkova1,*, Gergana Gencheva1, Dragomir Vassilev2, Milena Koleva2, Albert Krastanov3, Panteley Denev1

    Journal of Renewable Materials, Vol.6, No.7, pp. 671-679, 2018, DOI:10.32604/JRM.2018.00001

    Abstract Jerusalem artichoke (Helianthus tuberosus L.) tubers are industrial crop considered as a promising source for inulin production. “Green” method was performed for accelerated inulin extraction from Helianthus tuberosus L. tubers by the application of microwave irradiation. Further pretreatment of the water extract with acetone and ethanol yielded inulin (20%) with purity 89% and degree of polymerization 18. Jerusalem artichoke inulin was characterized by FTIR and NMR spectroscopy. For the first time eco-friendly synthesis of acetylated Jerusalem artichoke inulin was performed by the reaction with acetic anhydride, without toxic solvent, but only with sodium acetate as More >

  • Open Access

    ARTICLE

    Gamma Irradiation Upregulates B-cell Translocation Gene 2 to Attenuate Cell Proliferation of Lung Cancer Cells Through the JNK and NF-κB Pathways

    Peihe Wang*, Yuanyuan Cai*, Dongju Lin, Yingxiao Jiang*

    Oncology Research, Vol.25, No.7, pp. 1199-1205, 2017, DOI:10.3727/096504017X14873444858101

    Abstract Gamma ray can promote cancer cell apoptosis and cell cycle arrest. It is often used in the clinical treatment of tumors, including lung cancer. In this study, we aimed to explore the role of gamma ray treatment and its correlation with BTG2 in cell proliferation, apoptosis, and cell cycle arrest regulation in a lung cancer cell line. A549 cell viability, apoptosis rate, and cell cycle were investigated after gamma ray treatment. We then used siRNA for BTG2 to detect the effect of BTG2 knockdown on the progress of gamma ray-treated lung cancer cells. Finally, we… More >

  • Open Access

    ARTICLE

    Conductive Polymer Composites Synthesized from Diacetylene-Functionalized Linseed Oil and MWCNT: Gamma Irradiation and Organic Vapor Sensing

    A. Ramírez-Jiménez1*, S. Hernández López1, E. Bucio2, E. Vigueras Santiago1

    Journal of Renewable Materials, Vol.5, No.2, pp. 132-144, 2017, DOI:10.7569/JRM.2016.634138

    Abstract Epoxidized linseed oil (ELO) was synthesized and functionalized with propargylamine (PA) or 3-ethynylaniline (EA) and the products were crosslinked to obtain the diacetylene-functionalized epoxidized linseed oil polymers which were used as matrices in the preparation of the composites with multiwalled carbon nanotubes (MWCNTs). Electrical resistance at percentages between 4 and 20 wt/wt% of filler was measured and the percolation threshold was calculated, obtaining 1.2 and 1.7% for the composites with EA and PA respectively. Low critical concentration evidenced a good dispersion of the MWCNTs without necessity of any modification. The final products were used in More >

  • Open Access

    ARTICLE

    MULTICOMPONENT GAS-PARTICLE FLOW AND HEAT/MASS TRANSFER INDUCED BY A LOCALIZED LASER IRRADIATION ON A URETHANE-COATED STAINLESS STEEL SUBSTRATE

    Nazia Afrina, Yijin Maoa, Yuwen Zhanga,*, J. K. Chena, Robin Ritterb, Alan Lampsonb, Jonathan Stohsc

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.7

    Abstract A three-dimensional numerical simulation is conducted for a complex process in a laser-material system, which involves heat and mass transfer in a compressible gaseous phase and chemical reaction during laser irradiation on a urethane paint coated on a stainless steel substrate. A finite volume method (FVM) with a co-located grid mesh that discretizes the entire computational domain is employed to simulate the heating process. The results show that when the top surface of the paint reaches a threshold temperature of 560 K, the polyurethane starts to decompose through chemical reaction. As a result, combustion products CO2, More >

  • Open Access

    ARTICLE

    Transient Bioheat Simulation of the Laser-Tissue Interaction in Human Skin Using Hybrid Finite Element Formulation

    Ze-Wei Zhang*, Hui Wang, Qing-Hua Qin∗,‡

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 31-54, 2012, DOI:10.3970/mcb.2012.009.031

    Abstract This paper presents a hybrid finite element model for describing quantitatively the thermal responses of skin tissue under laser irradiation. The model is based on the boundary integral-based finite element method and the Pennes bioheat transfer equation. In this study, temporal discretization of the bioheat system is first performed and leads to the well-known modified Helmholtz equation. A radial basis function approach and the boundary integral based finite element method are employed to obtain particular and homogeneous solutions of the laser-tissue interaction problem. In the boundary integral based finite element formulation, two independent fields are More >

  • Open Access

    ARTICLE

    BIO-HEAT TRANSFER SIMULATION OF SQUARE AND CIRCULAR ARRAY OF RETINAL LASER IRRADIATION

    Arunn Narasimhan*, Kaushal Kumar Jha

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-8, 2011, DOI:10.5098/hmt.v2.3.3005

    Abstract Pan Retinal photocoagulation (PRP), a retinal laser surgical process, is simulated using a three-dimensional bio-heat transfer numerical model. Spots of two different type of array, square array of 3 × 3 spots and a circular array of six spots surrounding a central spot, are sequentially irradiated. Pennes bio-heat transfer model is used as the governing equation. Finite volume method is applied to find the temperature distribution due to laser irradiation inside the human eye. Each spot is heated for 100 ms and subsequently cooled for 100 ms with an initial laser power of 0.2 W. More >

  • Open Access

    ARTICLE

    A Molecular Dynamics Study of Irradiation Induced Cascades in Iron Containing Hydrogen

    E. Hayward1, C. Deo1

    CMC-Computers, Materials & Continua, Vol.16, No.2, pp. 101-116, 2010, DOI:10.3970/cmc.2010.016.101

    Abstract Damage cascades representative of those that would be induced by neutron irradiation have been simulated in systems of pure iron and iron containing 0.01 at.% hydrogen. Results from molecular dynamics simulations using three different embedded-atom method (EAM) type potentials are compared for primary knock-on atom energies of 5, 10, and 20 keV to assess the effect of hydrogen on the primary damage state. We examine the influence of hydrogen on the primary damage state due to a single radiation cascade. These results can serve as an atomistic database for methods and simulations for long time More >

Displaying 21-30 on page 3 of 33. Per Page