Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    A Method for Ultrasound Servo Tracking of Puncture Needle

    Shitong Ye1, Bo Yang2,*, Hao Quan3, Shan Liu4, Minyi Tang5, Jiawei Tian6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2287-2306, 2025, DOI:10.32604/cmes.2025.066195 - 31 August 2025

    Abstract Computer-aided surgical navigation technology helps and guides doctors to complete the operation smoothly, which simulates the whole surgical environment with computer technology, and then visualizes the whole operation link in three dimensions. At present, common image-guided surgical techniques such as computed tomography (CT) and X-ray imaging (X-ray) will cause radiation damage to the human body during the imaging process. To address this, we propose a novel Extended Kalman filter-based model that tracks the puncture needle-point using an ultrasound probe. To address the limitations of Kalman filtering methods based on position and velocity, our method of More >

  • Open Access

    ARTICLE

    Multi-Kernel Bandwidth Based Maximum Correntropy Extended Kalman Filter for GPS Navigation

    Amita Biswal, Dah-Jing Jwo*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 927-944, 2025, DOI:10.32604/cmes.2025.067299 - 31 July 2025

    Abstract The extended Kalman filter (EKF) is extensively applied in integrated navigation systems that combine the global navigation satellite system (GNSS) and strap-down inertial navigation system (SINS). However, the performance of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties, making it difficult to achieve optimal GNSS/INS integration. Dealing with non-Gaussian noise remains a significant challenge in filter development today. Therefore, the maximum correntropy criterion (MCC) is utilized in EKFs to manage heavy-tailed measurement noise. However, its capability to handle non-Gaussian process noise and unknown disturbances remains largely unexplored. In this paper,… More >

  • Open Access

    ARTICLE

    Optimized Attack and Detection on Multi-Sensor Cyber-Physical System

    Fangju Zhou1, Hanbo Zhang2, Na Ye1, Jing Huang1, Zhu Ren1,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4539-4561, 2025, DOI:10.32604/cmc.2025.065946 - 30 July 2025

    Abstract This paper explores security risks in state estimation based on multi-sensor systems that implement a Kalman filter and a detector. When measurements are transmitted via wireless networks to a remote estimator, the innovation sequence becomes susceptible to interception and manipulation by adversaries. We consider a class of linear deception attacks, wherein the attacker alters the innovation to degrade estimation accuracy while maintaining stealth against the detector. Given the inherent volatility of the detection function based on the detector, we propose broadening the traditional feasibility constraint to accommodate a certain degree of deviation from the distribution… More >

  • Open Access

    ARTICLE

    Toward Intrusion Detection of Industrial Cyber-Physical System: A Hybrid Approach Based on System State and Network Traffic Abnormality Monitoring

    Junbin He1,2, Wuxia Zhang3, Xianyi Liu1, Jinping Liu2,*, Guangyi Yang4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1227-1252, 2025, DOI:10.32604/cmc.2025.064402 - 09 June 2025

    Abstract The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System (ICPS), enhancing intelligence and autonomy. However, this transition also expands the attack surface, introducing critical security vulnerabilities. To address these challenges, this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection. Specifically, an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering (IVB-NCA-NLKF) method is developed to model nonlinear system dynamics, enabling optimal state estimation in multi-sensor ICPS environments. Intrusions within the physical sensing system are identified by More >

  • Open Access

    ARTICLE

    A Robust GNSS Navigation Filter Based on Maximum Correntropy Criterion with Variational Bayesian for Adaptivity

    Dah-Jing Jwo1,2,*, Yi Chang2, Ta-Shun Cho3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2771-2789, 2025, DOI:10.32604/cmes.2025.057825 - 03 March 2025

    Abstract In this paper, an advanced satellite navigation filter design, referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter (VBMCEKF), is introduced to enhance robustness and adaptability in scenarios with non-Gaussian noise and heavy-tailed outliers. The proposed design modifies the extended Kalman filter (EKF) for the global navigation satellite system (GNSS), integrating the maximum correntropy criterion (MCC) and the variational Bayesian (VB) method. This adaptive algorithm effectively reduces non-line-of-sight (NLOS) reception contamination and improves estimation accuracy, particularly in time-varying GNSS measurements. Experimental results show that the proposed method significantly outperforms conventional approaches in estimation More >

  • Open Access

    ARTICLE

    Robust Human Interaction Recognition Using Extended Kalman Filter

    Tanvir Fatima Naik Bukht1, Abdulwahab Alazeb2, Naif Al Mudawi2, Bayan Alabdullah3, Khaled Alnowaiser4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2987-3002, 2024, DOI:10.32604/cmc.2024.053547 - 18 November 2024

    Abstract In the field of computer vision and pattern recognition, knowledge based on images of human activity has gained popularity as a research topic. Activity recognition is the process of determining human behavior based on an image. We implemented an Extended Kalman filter to create an activity recognition system here. The proposed method applies an HSI color transformation in its initial stages to improve the clarity of the frame of the image. To minimize noise, we use Gaussian filters. Extraction of silhouette using the statistical method. We use Binary Robust Invariant Scalable Keypoints (BRISK) and SIFT More >

  • Open Access

    ARTICLE

    Unknown Environment Measurement Mapping by Unmanned Aerial Vehicle Using Kalman Filter-Based Low-Cost Estimated Parallel 8-Beam LIDAR

    Mohamed Rabik Mohamed Ismail1, Muthuramalingam Thangaraj1,*, Khaja Moiduddin2,*, Zeyad Almutairi2,3, Mustufa Haider Abidi2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4263-4279, 2024, DOI:10.32604/cmc.2024.055271 - 12 September 2024

    Abstract The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems, as well as satellites. More recently, unmanned aerial vehicles have also been employed for this purpose. The accurate detection and mapping of a target such as buildings, trees, and terrains are of utmost importance in various applications of unmanned aerial vehicles (UAVs), including search and rescue operations, object transportation, object detection, inspection tasks, and mapping activities. However, the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,… More >

  • Open Access

    ARTICLE

    Semantic Segmentation and YOLO Detector over Aerial Vehicle Images

    Asifa Mehmood Qureshi1, Abdul Haleem Butt1, Abdulwahab Alazeb2, Naif Al Mudawi2, Mohammad Alonazi3, Nouf Abdullah Almujally4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3315-3332, 2024, DOI:10.32604/cmc.2024.052582 - 15 August 2024

    Abstract Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management. However, vehicles come in a range of sizes, which is challenging to detect, affecting the traffic monitoring system’s overall accuracy. Deep learning is considered to be an efficient method for object detection in vision-based systems. In this paper, we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5 (YOLOv5) detector combined with a segmentation technique. The model consists of six steps. In the first step, all the extracted traffic sequence images are subjected… More >

  • Open Access

    ARTICLE

    Power Quality Disturbance Identification Basing on Adaptive Kalman Filter and Multi-Scale Channel Attention Fusion Convolutional Network

    Feng Zhao, Guangdi Liu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.7, pp. 1865-1882, 2024, DOI:10.32604/ee.2024.048209 - 11 June 2024

    Abstract In light of the prevailing issue that the existing convolutional neural network (CNN) power quality disturbance identification method can only extract single-scale features, which leads to a lack of feature information and weak anti-noise performance, a new approach for identifying power quality disturbances based on an adaptive Kalman filter (KF) and multi-scale channel attention (MS-CAM) fused convolutional neural network is suggested. Single and composite-disruption signals are generated through simulation. The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal, and subsequent integration of multi-scale features into the conventional CNN… More >

  • Open Access

    ARTICLE

    Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization

    Yan Wang*, You Lu, Yuqing Zhou, Zhijian Zhao

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2673-2703, 2024, DOI:10.32604/cmes.2023.046743 - 11 March 2024

    Abstract Indoor positioning is a key technology in today’s intelligent environments, and it plays a crucial role in many application areas. This paper proposed an unscented Kalman filter (UKF) based on the maximum correntropy criterion (MCC) instead of the minimum mean square error criterion (MMSE). This innovative approach is applied to the loose coupling of the Inertial Navigation System (INS) and Ultra-Wideband (UWB). By introducing the maximum correntropy criterion, the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise, thus enhancing its adaptability to diverse environmental localization requirements. Particularly in… More >

Displaying 1-10 on page 1 of 59. Per Page