Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,022)
  • Open Access

    ARTICLE

    Hybrid Runtime Detection of Malicious Containers Using eBPF

    Jeongeun Ryu1, Riyeong Kim2, Soomin Lee1, Sumin Kim1, Hyunwoo Choi1,2, Seongmin Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074871 - 12 January 2026

    Abstract As containerized environments become increasingly prevalent in cloud-native infrastructures, the need for effective monitoring and detection of malicious behaviors has become critical. Malicious containers pose significant risks by exploiting shared host resources, enabling privilege escalation, or launching large-scale attacks such as cryptomining and botnet activities. Therefore, developing accurate and efficient detection mechanisms is essential for ensuring the security and stability of containerized systems. To this end, we propose a hybrid detection framework that leverages the extended Berkeley Packet Filter (eBPF) to monitor container activities directly within the Linux kernel. The framework simultaneously collects flow-based network… More >

  • Open Access

    ARTICLE

    Integration of Large Language Models (LLMs) and Static Analysis for Improving the Efficacy of Security Vulnerability Detection in Source Code

    José Armando Santas Ciavatta, Juan Ramón Bermejo Higuera*, Javier Bermejo Higuera, Juan Antonio Sicilia Montalvo, Tomás Sureda Riera, Jesús Pérez Melero

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074566 - 12 January 2026

    Abstract As artificial Intelligence (AI) continues to expand exponentially, particularly with the emergence of generative pre-trained transformers (GPT) based on a transformer’s architecture, which has revolutionized data processing and enabled significant improvements in various applications. This document seeks to investigate the security vulnerabilities detection in the source code using a range of large language models (LLM). Our primary objective is to evaluate the effectiveness of Static Application Security Testing (SAST) by applying various techniques such as prompt persona, structure outputs and zero-shot. To the selection of the LLMs (CodeLlama 7B, DeepSeek coder 7B, Gemini 1.5 Flash,… More >

  • Open Access

    REVIEW

    AI-Generated Text Detection: A Comprehensive Review of Active and Passive Approaches

    Lingyun Xiang1,*, Nian Li2, Yuling Liu3, Jiayong Hu1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073347 - 12 January 2026

    Abstract The rapid advancement of large language models (LLMs) has driven the pervasive adoption of AI-generated content (AIGC), while also raising concerns about misinformation, academic misconduct, biased or harmful content, and other risks. Detecting AI-generated text has thus become essential to safeguard the authenticity and reliability of digital information. This survey reviews recent progress in detection methods, categorizing approaches into passive and active categories based on their reliance on intrinsic textual features or embedded signals. Passive detection is further divided into surface linguistic feature-based and language model-based methods, whereas active detection encompasses watermarking-based and semantic retrieval-based More >

  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

    Nikita Golovkin1,2, Olesya Nikulenkova3, Vsevolod Pobezhimov1, Alexander Nesmelov1, Sergei Chvalun1, Fedor Sorokin3, Arthur Krupnin1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073161 - 12 January 2026

    Abstract This study presents and verifies a hybrid methodology for reliable determination of parameters in structural rheological models (Zener, Burgers, and Maxwell) describing the viscoelastic behavior of polyurethane specimens manufactured using extrusion-based 3D printing. Through comprehensive testing, including cyclic compression at strain rates ranging from 0.12 to 120 mm/min (0%–15% strain) and creep/relaxation experiments (10%–30% strain), the lumped parameters were independently determined using both analytical and numerical solutions of the models’ differential equations, followed by cross-verification in additional experiments. Numerical solutions for creep and relaxation problems were obtained using finite element analysis, with the three-parameter Mooney-Rivlin… More > Graphic Abstract

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

  • Open Access

    ARTICLE

    Design of Virtual Driving Test Environment for Collecting and Validating Bad Weather SiLS Data Based on Multi-Source Images Using DCU with V2X-Car Edge Cloud

    Sun Park*, JongWon Kim

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072865 - 12 January 2026

    Abstract In real-world autonomous driving tests, unexpected events such as pedestrians or wild animals suddenly entering the driving path can occur. Conducting actual test drives under various weather conditions may also lead to dangerous situations. Furthermore, autonomous vehicles may operate abnormally in bad weather due to limitations of their sensors and GPS. Driving simulators, which replicate driving conditions nearly identical to those in the real world, can drastically reduce the time and cost required for market entry validation; consequently, they have become widely used. In this paper, we design a virtual driving test environment capable of More >

  • Open Access

    ARTICLE

    Atomistic Insights into Aluminium–Boron Nitride Nanolayered Interconnects for High-Performance VLSI Systems

    Mallikarjun P. Y.1, Rame Gowda D. N.1, Trisha J. K.1, Varshini M.1, Poornesha S. Shetty1, Mandar Jatkar1,*, Arpan Shah2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072507 - 12 January 2026

    Abstract As circuit feature sizes approach the nanoscale, traditional Copper (Cu) interconnects face significant hurdles posed by rising resistance-capacitance (RC) delay, electromigration, and high power dissipation. These limitations impose constraints on the scalability and reliability of future semiconductor technologies. Our paper describes the new Vertical multilayer Aluminium Boron Nitride Nanoribbon (AlBN) interconnect structure, integrated with Density functional theory (DFT) using first-principles calculations. This study explores AlBN-based nanostructures with doping of 1Cu, 2Cu, 1Fe (Iron), and 2Fe for the application of Very Large Scale Integration (VLSI) interconnects. The AlBN structure utilized the advantages of vertical multilayer interconnects… More >

  • Open Access

    ARTICLE

    FRF-BiLSTM: Recognising and Mitigating DDoS Attacks through a Secure Decentralized Feature Optimized Federated Learning Approach

    Sushruta Mishra1, Sunil Kumar Mohapatra2, Kshira Sagar Sahoo3, Anand Nayyar4, Tae-Kyung Kim5,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072493 - 12 January 2026

    Abstract With an increase in internet-connected devices and a dependency on online services, the threat of Distributed Denial of Service (DDoS) attacks has become a significant concern in cybersecurity. The proposed system follows a multi-step process, beginning with the collection of datasets from different edge devices and network nodes. To verify its effectiveness, experiments were conducted using the CICDoS2017, NSL-KDD, and CICIDS benchmark datasets alongside other existing models. Recursive feature elimination (RFE) with random forest is used to select features from the CICDDoS2019 dataset, on which a BiLSTM model is trained on local nodes. Local models… More >

  • Open Access

    ARTICLE

    Secured-FL: Blockchain-Based Defense against Adversarial Attacks on Federated Learning Models

    Bello Musa Yakubu1,*, Nor Shahida Mohd Jamail 2, Rabia Latif 2, Seemab Latif 3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072426 - 12 January 2026

    Abstract Federated Learning (FL) enables joint training over distributed devices without data exchange but is highly vulnerable to attacks by adversaries in the form of model poisoning and malicious update injection. This work proposes Secured-FL, a blockchain-based defensive framework that combines smart contract–based authentication, clustering-driven outlier elimination, and dynamic threshold adjustment to defend against adversarial attacks. The framework was implemented on a private Ethereum network with a Proof-of-Authority consensus algorithm to ensure tamper-resistant and auditable model updates. Large-scale simulation on the Cyber Data dataset, under up to 50% malicious client settings, demonstrates Secured-FL achieves 6%–12% higher accuracy, More >

  • Open Access

    ARTICLE

    From Budget-Aware Preferences to Optimal Composition: A Dual-Stage Framework for Wireless Energy Service Optimization

    Haotian Zhang, Jing Li*, Ming Zhu, Zhiyong Zhao, Hongli Su, Liming Sun

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072381 - 12 January 2026

    Abstract In the wireless energy transmission service composition optimization problem, a key challenge is accurately capturing users’ preferences for service criteria under complex influencing factors, and optimally selecting a composition solution under their budget constraints. Existing studies typically evaluate satisfaction solely based on energy transmission capacity, while overlooking critical factors such as price and trustworthiness of the provider, leading to a mismatch between optimization outcomes and user needs. To address this gap, we construct a user satisfaction evaluation model for multi-user and multi-provider scenarios, systematically incorporating service price, transmission capacity, and trustworthiness into the satisfaction assessment… More >

  • Open Access

    ARTICLE

    A Firefly Algorithm-Optimized CNN–BiLSTM Model for Automated Detection of Bone Cancer and Marrow Cell Abnormalities

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072343 - 12 January 2026

    Abstract Early and accurate detection of bone cancer and marrow cell abnormalities is critical for timely intervention and improved patient outcomes. This paper proposes a novel hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) architecture, optimized using the Firefly Optimization algorithm (FO). The proposed CNN-BiLSTM-FO model is tailored for structured biomedical data, capturing both local patterns and sequential dependencies in diagnostic features, while the Firefly Algorithm fine-tunes key hyperparameters to maximize predictive performance. The approach is evaluated on two benchmark biomedical datasets: one comprising diagnostic data… More >

Displaying 1-10 on page 1 of 4022. Per Page