Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (119)
  • Open Access

    ABSTRACT

    Research on Methods of Oxigen Delivery Applied in Deep-sea Human Occupied Vehicle(HOV)

    Lei Jiang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.2, pp. 47-48, 2011, DOI:10.3970/icces.2011.019.047

    Abstract Ocean resources, for which the modern military and economy are competing, are the material sources for sustainable development. In order to keep our own rights in the competition of international resources, the project to develop a deep-sea HOV was started.
    In this paper different requirements of O2 concentration in the closed space of various underwater vehicles such as submarine and HOV is introduced. Based on that, from the aspects of power, space size, influence to the environment and O2 concentration the particular demands for delivering O2 are analyzed. Several O2 delivering methods in the closed space such as the… More >

  • Open Access

    ARTICLE

    Eliminating Slivers in Three-Dimensional Finite Element Models

    R.H. Moore1, S. Saigal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.3, pp. 283-292, 2005, DOI:10.3970/cmes.2005.007.283

    Abstract An efficient method for treating slivers and other poorly shaped elements in finite element solutions is presented. A major difficulty for finite element analyses arises from the creation of slivers in automated mesh generation. Sliver shaped elements can degrade the accuracy of a solution and are difficult to remove from a mesh. The proposed method treats slivers by first merging them with neighboring elements to form polyhedra and next subdividing the polyhedra into well-shaped tetrahedral elements. The method does not require the cumbersome and expensive operations of addition or rearrangement of nodes. The validity and accuracy of the present method… More >

  • Open Access

    ARTICLE

    Role of Tumor Microvessel Architecture and Function in Chemotherapeutic Drug Delivery: A Three-Dimensional Numerical Study

    Yan Cai1,1, Zhiyong Li1,2,*

    Molecular & Cellular Biomechanics, Vol.14, No.2, pp. 59-81, 2017, DOI:10.3970/mcb.2017.014.057

    Abstract To investigate the dynamic changes of solid tumor and neo-vasculature in response to chemotherapeutic agent, we proposed a multi-discipline three-dimensional mathematical model by coupling tumor growth, angiogenesis, vessel remodelling, microcirculation and drug delivery. The tumor growth is described by the cell automaton model, in which three cell phenotypes (proliferating cell, quiescent cell and necrotic cell) are assumed to reflect the dynamics of tumor progress. A 3D tree-like architecture network with different orders for vessel diameter is generated as pre-existing vasculature in host tissue. The chemical substances including oxygen, vascular endothelial growth factor, extra-cellular matrix and matrix degradation enzymes are calculated… More >

  • Open Access

    ARTICLE

    A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems

    Hangjun Zhou1,2,*, Guang Sun1, Sha Fu1, Wangdong Jiang1, Tingting Xie3, Danqing Duan1

    CMC-Computers, Materials & Continua, Vol.56, No.1, pp. 73-89, 2018, DOI: 10.3970/cmc.2018.02411

    Abstract In the large-scale Distributed Virtual Environment (DVE) multimedia systems, one of key challenges is to distributedly preserve causal order delivery of messages in real time. Most of the existing causal order control approaches with real-time constraints use vector time as causal control information which is closely coupled with system scales. As the scale expands, each message is attached a large amount of control information that introduces too much network transmission overhead to maintain the real-time causal order delivery. In this article, a novel Lightweight Real-Time Causal Order (LRTCO) algorithm is proposed for large-scale DVE multimedia systems. LRTCO predicts and compares… More >

  • Open Access

    ARTICLE

    A Numerical Study of Passive Receptor-Mediated Endocytosis of Nanoparticles: The Effect of Mechanical Properties

    Xinyue Liu1, Yunqiao Liu1, Xiaobo Gong1,*, Huaxiong Huang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 281-300, 2018, DOI: 10.31614/cmes.2018.04989

    Abstract In this work, a three-dimensional axisymmetric model with nanoparticle, receptor-ligand bonds and cell membrane as a system was used to study the quasi-static receptor-mediated endocytosis process of spherical nanoparticles in drug delivery. The minimization of the system energy function was carried out numerically, and the deformations of nanoparticle, receptor-ligand bonds and cell membrane were predicted. Results show that passive endocytosis may fail due to the rupture of receptor-ligand bonds during the wrapping process, and the size and rigidity of nanoparticles affect the total deformation energy and the terminal wrapping stage. Our results suggest that, in addition to the energy requirement,… More >

  • Open Access

    ARTICLE

    Design Evaluation of a Particle Bombardment System Used to Deliver Substances into Cells

    Eduardo M. B. Campello1,2, Tarek I. Zohdi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 221-245, 2014, DOI:10.3970/cmes.2014.098.221

    Abstract This work deals with the bombardment of a stream of particles possessing varying mean particle size, velocity and aspect ratio into a cell that has fixed (known) compliance characteristics. The particles are intended to penetrate the cell membrane causing zero or minimum damage and deliver foreign substances (which are attached to their surfaces) to the interior of the cell. We adopt a particle-based (discrete element method) computational model that has been recently developed by the authors to describe both the incoming stream of particles and the cell membrane. By means of parametric numerical simulations, treating the stream’s mean particle size,… More >

  • Open Access

    ARTICLE

    MicroCT/Micromechanics-Based Finite Element Models and Quasi-Static Unloading Tests Deliver Consistent Values for Young's Modulus of Rapid-Prototyped Polymer-Ceramic Tissue Engineering Scaffold

    K.W. Luczynski1, A. Dejaco1, O. Lahayne1, J. Jaroszewicz2, W.Swieszkowski2, C. Hellmich1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 505-529, 2012, DOI:10.3970/cmes.2012.087.505

    Abstract A 71 volume-% macroporous tissue engineering scaffold made of poly-l-lactide (PLLA) with 10 mass-% of pseudo-spherical tri-calcium phosphate (TCP) inclusions (exhibiting diameters in the range of several nanometers) was microCT-scanned. The corresponding stack of images was converted into regular Finite Element (FE) models consisting of around 100,000 to 1,000,000 finite elements. Therefore, the attenuation-related, voxel-specific grey values were converted into TCP-contents, and the latter, together with nanoindentation tests,entered a homogenization scheme of the Mori-Tanaka type, as to deliver voxel-specific (and hence, finite element-specific) elastic properties. These FE models were uniaxially loaded, giving access to the macroscopic Young's modulus of the… More >

  • Open Access

    ARTICLE

    Drug Delivery: From a Contact Lens to the Anterior Chamber

    J.A. Ferreira2,3, P. de Oliveira2, P. Silva4, J.N. Murta5

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.1, pp. 1-14, 2011, DOI:10.3970/cmes.2011.071.001

    Abstract Mathematical models to describe drug concentration profiles of topically administered drug in the anterior chamber aqueous humor have been proposed by several authors. The aim of this paper is to present a mathematical model to predict the drug concentration in the anterior chamber when a therapeutical contact lens with the drug entrapped in nanoparticles is used. More >

  • Open Access

    ARTICLE

    Sustained Drug Release from Contact Lenses

    J.A.Ferreira2,3, P. Oliveira1, P.M. Silva4, A. Carreira5,3, J.N. Murta6

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.2, pp. 151-180, 2010, DOI:10.3970/cmes.2010.060.151

    Abstract This paper focuses on the release of an ophthalmic drug (flurbiprofen) from a loaded copolymer where the drug is simultaneously dispersed in the polymeric matrix and entrapped in particles. The copolymer is based in 2-hydroxyethyl methacrylate co-methacrylic acid and silicone is used to prepare the loaded particles. A mathematical model to simulate the drug release is proposed and a qualitative analysis is performed. In vitro experimental results are compared with simulation results. Contact lens made from the presented copolymer are expected to deliver drug at therapeutical levels for a few days. More >

Displaying 111-120 on page 12 of 119. Per Page