Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access


    Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM

    Lin Ma1, Liyong Wang1, Shuang Zeng1, Yutong Zhao1, Chang Liu1, Heng Zhang1, Qiong Wu2,*, Hongbo Ren2

    Energy Engineering, Vol.121, No.6, pp. 1473-1493, 2024, DOI:10.32604/ee.2024.047332

    Abstract Accurate load forecasting forms a crucial foundation for implementing household demand response plans and optimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations, a single prediction model is hard to capture temporal features effectively, resulting in diminished prediction accuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neural network (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), is proposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features from the original data, enhancing the quality of data… More >

  • Open Access


    Investigating Periodic Dependencies to Improve Short-Term Load Forecasting

    Jialin Yu1,*, Xiaodi Zhang2, Qi Zhong1, Jian Feng1

    Energy Engineering, Vol.121, No.3, pp. 789-806, 2024, DOI:10.32604/ee.2023.043299

    Abstract With a further increase in energy flexibility for customers, short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids. The electrical load series exhibit periodic patterns and share high associations with metrological data. However, current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series, which hinders the further improvement of short-term load forecasting accuracy. Therefore, this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction. In addition, More >

  • Open Access


    Decentralized Heterogeneous Federal Distillation Learning Based on Blockchain

    Hong Zhu*, Lisha Gao, Yitian Sha, Nan Xiang, Yue Wu, Shuo Han

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3363-3377, 2023, DOI:10.32604/cmc.2023.040731

    Abstract Load forecasting is a crucial aspect of intelligent Virtual Power Plant (VPP) management and a means of balancing the relationship between distributed power grids and traditional power grids. However, due to the continuous emergence of power consumption peaks, the power supply quality of the power grid cannot be guaranteed. Therefore, an intelligent calculation method is required to effectively predict the load, enabling better power grid dispatching and ensuring the stable operation of the power grid. This paper proposes a decentralized heterogeneous federated distillation learning algorithm (DHFDL) to promote trusted federated learning (FL) between different federates… More >

  • Open Access


    Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems

    Firas Abedi1, Hayder M. A. Ghanimi2, Mohammed A. M. Sadeeq3, Ahmed Alkhayyat4,*, Zahraa H. Kareem5, Sarmad Nozad Mahmood6, Ali Hashim Abbas7, Ali S. Abosinnee8, Waleed Khaild Al-Azzawi9, Mustafa Musa Jaber10,11, Mohammed Dauwed12

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3359-3374, 2023, DOI:10.32604/cmc.2023.034221

    Abstract Recent economic growth and development have considerably raised energy consumption over the globe. Electric load prediction approaches become essential for effective planning, decision-making, and contract evaluation of the power systems. In order to achieve effective forecasting outcomes with minimum computation time, this study develops an improved whale optimization with deep learning enabled load prediction (IWO-DLELP) scheme for energy storage systems (ESS) in smart grid platform. The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS. The proposed IWO-DLELP model initially undergoes pre-processing in two More >

  • Open Access


    Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm

    Jipeng Gu1, Weijie Zhang1, Youbing Zhang1,*, Binjie Wang1, Wei Lou2, Mingkang Ye3, Linhai Wang3, Tao Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2221-2236, 2023, DOI:10.32604/cmes.2023.025396

    Abstract An improved fuzzy time series algorithm based on clustering is designed in this paper. The algorithm is successfully applied to short-term load forecasting in the distribution stations. Firstly, the K-means clustering method is used to cluster the data, and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division. On this basis, the data is fuzzed to form a fuzzy time series. Secondly, a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load, which is used to predict the short-term trend More >

  • Open Access


    A Novel Ultra Short-Term Load Forecasting Method for Regional Electric Vehicle Charging Load Using Charging Pile Usage Degree

    Jinrui Tang*, Ganheng Ge, Jianchao Liu, Honghui Yang

    Energy Engineering, Vol.120, No.5, pp. 1107-1132, 2023, DOI:10.32604/ee.2023.025666

    Abstract Electric vehicle (EV) charging load is greatly affected by many traffic factors, such as road congestion. Accurate ultra short-term load forecasting (STLF) results for regional EV charging load are important to the scheduling plan of regional charging load, which can be derived to realize the optimal vehicle to grid benefit. In this paper, a regional-level EV ultra STLF method is proposed and discussed. The usage degree of all charging piles is firstly defined by us based on the usage frequency of charging piles, and then constructed by our collected EV charging transaction data in the… More >

  • Open Access


    A Levenberg–Marquardt Based Neural Network for Short-Term Load Forecasting

    Saqib Ali1,2, Shazia Riaz2,3, Safoora2, Xiangyong Liu1, Guojun Wang1,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1783-1800, 2023, DOI:10.32604/cmc.2023.035736

    Abstract Short-term load forecasting (STLF) is part and parcel of the efficient working of power grid stations. Accurate forecasts help to detect the fault and enhance grid reliability for organizing sufficient energy transactions. STLF ranges from an hour ahead prediction to a day ahead prediction. Various electric load forecasting methods have been used in literature for electricity generation planning to meet future load demand. A perfect balance regarding generation and utilization is still lacking to avoid extra generation and misusage of electric load. Therefore, this paper utilizes Levenberg–Marquardt (LM) based Artificial Neural Network (ANN) technique to… More >

  • Open Access


    Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA

    Jiahao Wen, Zhijian Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 749-765, 2023, DOI:10.32604/cmes.2023.023865

    Abstract Since the existing prediction methods have encountered difficulties in processing the multiple influencing factors in short-term power load forecasting, we propose a bidirectional long short-term memory (BiLSTM) neural network model based on the temporal pattern attention (TPA) mechanism. Firstly, based on the grey relational analysis, datasets similar to forecast day are obtained. Secondly, the bidirectional LSTM layer models the data of the historical load, temperature, humidity, and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network, so that the influencing factors (with different characteristics) can select relevant… More >

  • Open Access


    Electric Vehicle Charging Capacity of Distribution Network Considering Conventional Load Composition

    Pengwei Yang1, Yuqi Cao2, Jie Tan2, Junfa Chen1, Chao Zhang1, Yan Wang1, Haifeng Liang2,*

    Energy Engineering, Vol.120, No.3, pp. 743-762, 2023, DOI:10.32604/ee.2023.024128

    Abstract At present, the large-scale access to electric vehicles (EVs) is exerting considerable pressure on the distribution network. Hence, it is particularly important to analyze the capacity of the distribution network to accommodate EVs. To this end, we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load. First, the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed. Second, the charging behavior of an EV is simulated by combining the Monte Carlo method and the trip chain theory. After obtaining… More >

  • Open Access


    Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid

    Manish Kumar1,2,*, Nitai Pal1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4785-4799, 2023, DOI:10.32604/cmc.2022.032971

    Abstract Increasing energy demands due to factors such as population, globalization, and industrialization has led to increased challenges for existing energy infrastructure. Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable, cheap, and easily available sources of energy. Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions. But the integration of distributed energy sources and increase in electric demand enhance instability in the grid. Short-term electrical load forecasting reduces the grid… More >

Displaying 1-10 on page 1 of 23. Per Page