Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,498)
  • Open Access

    ARTICLE

    Method for Detecting Macroscopic Irregularities in Gears Based on Template Matching and the Nonequivalence Operation

    W.C. Wang1, F.L. Chang2, Y.L. Liu1, X. J. Wu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.5, pp. 411-431, 2015, DOI:10.3970/cmes.2015.107.411

    Abstract The detection of macroscopic irregularities is an essential procedure during the production of gears, and it helps to guarantee the quality of electromechanical transmission equipment. The working principles of template matching and the image nonequivalence operation are described in detail in this paper. Gray-level transformation, edge-preserving filtering, image segmentation, feature extraction, and pattern recognition were analyzed, leading to the design of a defect detection system based on template matching and the nonequivalence operation, followed by the development of a hardware platform and application software for the system. The experimental results indicate that the proposed detection system could perform fast detection… More >

  • Open Access

    ARTICLE

    A New Minimax Probabilistic Approach and Its Application in Recognition the Purity of Hybrid Seeds

    Liming Yang1, Yongping Gao2, Qun Sun3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.6, pp. 493-506, 2015, DOI:10.3970/cmes.2015.104.493

    Abstract Minimax probability machine (MPM) has been recently proposed and shown its advantage in pattern recognition. In this paper, we present a new minimax probabilistic approach (MPA),which can provide an explicit lower bound on prediction accuracy. Applying the Chebyshev-Cantelli inequality, the MPA is posed as a second order cone program formulation and solved effectively. Following that, this method is exploited directly to recognize the purity of hybrid seeds using near-infrared spectroscopic data. Experimental results in different spectral regions show that the proposed MPA is competitive with the existing minimax probability machine and support vector machine in generalization, while requires less computational… More >

  • Open Access

    ARTICLE

    On Macroscopic Behaviors of Shape Memory Alloy Thick-walled Cylinder Under Combined Internal Pressure and Radial Temperature Gradient

    Bingfei Liu1, Guansuo Dui2,3, Lijun Xue2, Benming Xie1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.3, pp. 239-260, 2013, DOI:10.32604/cmes.2013.094.239

    Abstract Analytical solutions are derived for the macroscopic behaviors of a Shape Memory Alloy (SMA) thick-walled cylinder subjected to internal pressure and radial temperature gradient. The Tresca transformation criterion and linear hardening are used. Equations are given for the radial and circumferential stresses, transformation strains and martensite volume fractions at both the elastic step and the transformation step. Numerical results are presented and in good agreement with the finite element simulations. More >

  • Open Access

    ARTICLE

    Size-Dependent Behavior of Macromolecular Solids III: The Role of Entanglements

    W. Wei, David CC LAM1

    CMES-Computer Modeling in Engineering & Sciences, Vol.75, No.3&4, pp. 235-246, 2011, DOI:10.3970/cmes.2011.075.235

    Abstract Chain rotations in macromolecular solids are constrained by entanglements. The effects of constraints on strain deformation and strain gradient deformation were investigated using molecular dynamic (MD) simulation in this paper. The effects on the chains were examined by embedding the chains inside bent beams. For thick beams, the simulated elastic moduli for styrene butyl rubber (SBR), polyimide (PI) and polyethylene (PE) were in good agreement with elastic moduli reported in the literature. The elastic moduli varied linearly with entanglements and inversely with the molecular weight. For thin beams where strain gradients were non-negligible, the results showed that l2, the higher… More >

  • Open Access

    ARTICLE

    Insight into High-quality Aerodynamic Design Spaces through Multi-objective Optimization

    T. Kipouros1, D.M. Jaeggi2, W.N. Dawes3, G.T. Parks2,A.M. Savill1, P.J. Clarkson2

    CMES-Computer Modeling in Engineering & Sciences, Vol.37, No.1, pp. 1-44, 2008, DOI:10.3970/cmes.2008.037.001

    Abstract An approach to support the computational aerodynamic design process is presented and demonstrated through the application of a novel multi-objective variant of the Tabu Search optimization algorithm for continuous problems to the aerodynamic design optimization of turbomachinery blades. The aim is to improve the performance of a specific stage and ultimately of the whole engine. The integrated system developed for this purpose is described. This combines the optimizer with an existing geometry parameterization scheme and a well-established CFD package. The system's performance is illustrated through case studies -- one two-dimensional, one three-dimensional -- in which flow characteristics important to the… More >

  • Open Access

    ARTICLE

    High-Performance 3D Hybrid/Mixed, and Simple 3D Voronoi Cell Finite Elements, for Macro- & Micro-mechanical Modeling of Solids, Without Using Multi-field Variational Principles

    P. L. Bishay1, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.1, pp. 41-98, 2012, DOI:10.3970/cmes.2012.084.041

    Abstract Higher-order two-dimensional as well as low and higher-order three-dimensional new Hybrid/Mixed (H/M) finite elements based on independently assumed displacement, and judiciously chosen strain fields, denoted by HMFEM-2, are developed here for applications in macro-mechanics. The idea of these new H/M finite elements is based on collocating the components of the independent strain field, with those derived from the independently assumed displacement fields at judiciously and cleverly chosen collocation points inside the element. This is unlike the other techniques used in older H/M finite elements where a two-field variational principle was used in order to enforce both equilibrium and compatibility conditions… More >

  • Open Access

    ARTICLE

    An Integrated RBFN-Based Macro-Micro Multi-Scale Method for Computation of Visco-Elastic Fluid Flows

    C.-D. Tran1, D.-A. An-Vo1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.2, pp. 137-162, 2011, DOI:10.32604/cmes.2011.082.137

    Abstract This paper presents a numerical approach for macro-micro multi-scale modelling of visco-elastic fluid flows based on the Integrated Radial Basis Function Networks (IRBFNs) and the Stochastic Simulation Technique (SST). The extra stress is calculated using the Brownian configuration fields (BCFs) technique while the velocity field is locally approximated at a set of collocation points using 1D-IRBFNs. In this approach, the stress is decoupled from the velocity field and computed from the molecular configuration directly without the need for a closed form rheological constitutive equation. The equations governing the macro flow field are discretised using a meshless collocation method where the… More >

  • Open Access

    ARTICLE

    Development of T-Trefftz Four-Node Quadrilateral and Voronoi Cell Finite Elements for Macro- & Micromechanical Modeling of Solids

    L. Dong1, S. N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.1, pp. 69-118, 2011, DOI:10.3970/cmes.2011.081.069

    Abstract In this paper, we explore three different ways of developing T-Trefftz finite elements of quadrilateral as well as polygonal shapes. In all of these three approaches, in addition to assuming an inter-element compatible displacement field along the element boundary, an interior displacement field for each element is independently assumed as a linear combination of T-Trefftz trial functions. In addition, a characteristic length is defined for each element to scale the T-Trefftz modes, in order to avoid solving systems of ill-conditioned equations. The differences between these three approaches are that, the compatibility between the independently assumed fields at the boundary and… More >

  • Open Access

    ARTICLE

    The Configuration Evolution and Macroscopic Elasticity of Fluid-filled Closed Cell Composites: Micromechanics and Multiscale Homogenization Modelling

    Lianhua Ma1, Bernard F. Rolfe2, Qingsheng Yang1,3, Chunhui Yang2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.2, pp. 131-158, 2011, DOI:10.3970/cmes.2011.079.131

    Abstract For fluid-filled closed cell composites widely distributed in nature, the configuration evolution and effective elastic properties are investigated using a micromechanical model and a multiscale homogenization theory, in which the effect of initial fluid pressure is considered. Based on the configuration evolution of the composite, we present a novel micromechanics model to examine the interactions between the initial fluid pressure and the macroscopic elasticity of the material. In this model, the initial fluid pressure of the closed cells and the corresponding configuration can be produced by applying an eigenstrain at the introduced fictitious stress-free configuration, and the pressure-induced initial microscopic… More >

  • Open Access

    ARTICLE

    Classification and Optimization Model of Mesoporous Carbons Pore Structure and Adsorption Properties Based on Support Vector Machine

    Zhen Yang1, Xingsheng Gu2, Xiaoyi Liang1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 161-182, 2011, DOI:10.3970/cmes.2011.074.161

    Abstract Mesoporous carbons are synthesized by organic-organic self-assembly of triblock copolymer F127 and a new type of carbon precursor as resorcinol-furfural oligomers. Some factors will impact the mesoporous carbons pore structure and properties were studied. The main factors, such as the ratio of triblock copolymer F127 and oligomers, degree of polymerizstry of resorcinol-furfural oligomers, the ratio of resorcinol-furfural oligomers - F/R, and their mutual relations were identified. Aimed at balancing the complex characteristic of mesoporous structure and adsorption properties, a classification and optimization model based on support vector machine is developed. The optimal operation conditions of Barret-Joyner-Halenda (BJH) adsorption cumulative volume… More >

Displaying 1451-1460 on page 146 of 1498. Per Page