Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,008)
  • Open Access

    ARTICLE

    Energy-Aware Scheduling for Tasks with Target-Time in Blockchain based Data Centres

    I. Devi*, G.R. Karpagam

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 405-419, 2022, DOI:10.32604/csse.2022.018573 - 09 September 2021

    Abstract

    Cloud computing infrastructures have intended to provide computing services to end-users through the internet in a pay-per-use model. The extensive deployment of the Cloud and continuous increment in the capacity and utilization of data centers (DC) leads to massive power consumption. This intensifying scale of DCs has made energy consumption a critical concern. This paper emphasizes the task scheduling algorithm by formulating the system model to minimize the makespan and energy consumption incurred in a data center. Also, an energy-aware task scheduling in the Blockchain-based data center was proposed to offer an optimal solution that

    More >

  • Open Access

    ARTICLE

    Performance Analysis and Throughput Enhancement of the STET Technique for WLAN IEEE 802.11ad

    M. Vanitha1,*, J. Kirubakaran2, K. Radhika2

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 571-579, 2022, DOI:10.32604/csse.2022.017663 - 09 September 2021

    Abstract The IEEE 802.11ad innovation has enabled the impact of remote devices in unauthorized 60 GHz unlicensed frequency band at Giga bits per second information transfer rate in speed concentrated 5G applications. We have presented an innovative work that deals with the upgradation of the ability of IEEE 802.11ad wireless LAN to make it suitable for wireless applications. An exact examination on the IEEE 802.11ad analysis has been carried out in this work to achieve the greatest throughput. This has pulled attraction in broad consideration for accomplishing the pinnacle transmission rate of 8 Gbit/s. IEEE 802.11ad… More >

  • Open Access

    ARTICLE

    Mammogram Learning System for Breast Cancer Diagnosis Using Deep Learning SVM

    G. Jayandhi1,*, J.S. Leena Jasmine2, S. Mary Joans2

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 491-503, 2022, DOI:10.32604/csse.2022.016376 - 09 September 2021

    Abstract The most common form of cancer for women is breast cancer. Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer. Thus, an automated computerized system with high accuracy is needed. In this study, an efficient Deep Learning Architecture (DLA) with a Support Vector Machine (SVM) is designed for breast cancer diagnosis. It combines the ideas from DLA with SVM. The state-of-the-art Visual Geometric Group (VGG) architecture with 16 layers is employed in this study as it uses the small size of 3 × 3 convolution filters that reduces… More >

  • Open Access

    ARTICLE

    A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19

    Ahmed Reda*, Sherif Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1381-1399, 2022, DOI:10.32604/cmc.2022.019809 - 07 September 2021

    Abstract Many respiratory infections around the world have been caused by coronaviruses. COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate. There is a high need for computer-assisted diagnostics (CAD) in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems. Machine learning (ML) has been used to examine chest X-ray frames. In this paper, a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes, a pneumonia patient, a More >

  • Open Access

    ARTICLE

    QoS Based Cloud Security Evaluation Using Neuro Fuzzy Model

    Nadia Tabassum1, Tahir Alyas2, Muhammad Hamid3,*, Muhammad Saleem4, Saadia Malik5, Syeda Binish Zahra2

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1127-1140, 2022, DOI:10.32604/cmc.2022.019760 - 07 September 2021

    Abstract Cloud systems are tools and software for cloud computing that are deployed on the Internet or a cloud computing network, and users can use them at any time. After assessing and choosing cloud providers, however, customers confront the variety and difficulty of quality of service (QoS). To increase customer retention and engagement success rates, it is critical to research and develops an accurate and objective evaluation model. Cloud is the emerging environment for distributed services at various layers. Due to the benefits of this environment, globally cloud is being taken as a standard environment for… More >

  • Open Access

    ARTICLE

    BHGSO: Binary Hunger Games Search Optimization Algorithm for Feature Selection Problem

    R. Manjula Devi1, M. Premkumar2, Pradeep Jangir3, B. Santhosh Kumar4, Dalal Alrowaili5, Kottakkaran Sooppy Nisar6,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 557-579, 2022, DOI:10.32604/cmc.2022.019611 - 07 September 2021

    Abstract In machine learning and data mining, feature selection (FS) is a traditional and complicated optimization problem. Since the run time increases exponentially, FS is treated as an NP-hard problem. The researcher’s effort to build a new FS solution was inspired by the ongoing need for an efficient FS framework and the success rates of swarming outcomes in different optimization scenarios. This paper presents two binary variants of a Hunger Games Search Optimization (HGSO) algorithm based on V- and S-shaped transfer functions within a wrapper FS model for choosing the best features from a large dataset.… More >

  • Open Access

    ARTICLE

    Recognition and Tracking of Objects in a Clustered Remote Scene Environment

    Haris Masood1, Amad Zafar2, Muhammad Umair Ali3, Muhammad Attique Khan4, Salman Ahmed1, Usman Tariq5, Byeong-Gwon Kang6, Yunyoung Nam6,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1699-1719, 2022, DOI:10.32604/cmc.2022.019572 - 07 September 2021

    Abstract Object recognition and tracking are two of the most dynamic research sub-areas that belong to the field of Computer Vision. Computer vision is one of the most active research fields that lies at the intersection of deep learning and machine vision. This paper presents an efficient ensemble algorithm for the recognition and tracking of fixed shape moving objects while accommodating the shift and scale invariances that the object may encounter. The first part uses the Maximum Average Correlation Height (MACH) filter for object recognition and determines the bounding box coordinates. In case the correlation based… More >

  • Open Access

    ARTICLE

    Integrating Deep Learning and Machine Translation for Understanding Unrefined Languages

    HongGeun Ji1,2, Soyoung Oh1, Jina Kim3, Seong Choi1,2, Eunil Park1,2,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 669-678, 2022, DOI:10.32604/cmc.2022.019521 - 07 September 2021

    Abstract In the field of natural language processing (NLP), the advancement of neural machine translation has paved the way for cross-lingual research. Yet, most studies in NLP have evaluated the proposed language models on well-refined datasets. We investigate whether a machine translation approach is suitable for multilingual analysis of unrefined datasets, particularly, chat messages in Twitch. In order to address it, we collected the dataset, which included 7,066,854 and 3,365,569 chat messages from English and Korean streams, respectively. We employed several machine learning classifiers and neural networks with two different types of embedding: word-sequence embedding and the… More >

  • Open Access

    ARTICLE

    Covid-19 Detection from Chest X-Ray Images Using Advanced Deep Learning Techniques

    Shubham Mahajan1,*, Akshay Raina2, Mohamed Abouhawwash3,4, Xiao-Zhi Gao5, Amit Kant Pandit1

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1541-1556, 2022, DOI:10.32604/cmc.2022.019496 - 07 September 2021

    Abstract Like the Covid-19 pandemic, smallpox virus infection broke out in the last century, wherein 500 million deaths were reported along with enormous economic loss. But unlike smallpox, the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement in medical aid and diagnostics. Data analytics, machine learning, and automation techniques can help in early diagnostics and supporting treatments of many reported patients. This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques. Our study suggests that using the Prediction More >

  • Open Access

    ARTICLE

    Optimal Load Forecasting Model for Peer-to-Peer Energy Trading in Smart Grids

    Lijo Jacob Varghese1, K. Dhayalini2, Suma Sira Jacob3, Ihsan Ali4,*, Abdelzahir Abdelmaboud5, Taiseer Abdalla Elfadil Eisa6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1053-1067, 2022, DOI:10.32604/cmc.2022.019435 - 07 September 2021

    Abstract Peer-to-Peer (P2P) electricity trading is a significant research area that offers maximum fulfilment for both prosumer and consumer. It also decreases the quantity of line loss incurred in Smart Grid (SG). But, uncertainities in demand and supply of the electricity might lead to instability in P2P market for both prosumer and consumer. In recent times, numerous Machine Learning (ML)-enabled load predictive techniques have been developed, while most of the existing studies did not consider its implicit features, optimal parameter selection, and prediction stability. In order to overcome fulfill this research gap, the current research paper… More >

Displaying 1471-1480 on page 148 of 2008. Per Page