Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Cu2MgSnS4 thin films: a promising absorber material for next-generation solar cells

    Y. B. K. Kumara,, S. G. Prasadb, A. S. S. Smithac, S. M. Naidud, G. S. Babuc, P. U. Bhaskare, U. Chalapathif,

    Chalcogenide Letters, Vol.22, No.9, pp. 847-854, 2025, DOI:10.15251/CL.2025.229.847

    Abstract Cu2MgSnS4 thin films have emerged as potential candidates for use in photovoltaic applications owing to their direct band gap properties. These quaternary compounds are fabricated through the spray pyrolysis method at 175 °C, utilizing two different carrier gases, such as air and nitrogen. After pyrolysis, deposited films are annealed at 450 °C for 1 hour. Structural analysis confirms the films exhibit a tetragonal kesterite structure. Using nitrogen as the carrier gas results in a larger crystallite size, accompanied by a reduction in both the dislocation density and microstrain. Raman spectroscopy further validates phase purity. Surface morphology analysis indicates More >

  • Open Access

    ARTICLE

    HMGS: Hierarchical Matching Graph Neural Network for Session-Based Recommendation

    Pengfei Zhang1, Rui Xin1, Xing Xu1, Yuzhen Wang1, Xiaodong Li2, Xiao Zhang2, Meina Song2, Zhonghong Ou3,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5413-5428, 2025, DOI:10.32604/cmc.2025.062618 - 19 May 2025

    Abstract Session-based recommendation systems (SBR) are pivotal in suggesting items by analyzing anonymized sequences of user interactions. Traditional methods, while competent, often fall short in two critical areas: they fail to address potential inter-session item transitions, which are behavioral dependencies that extend beyond individual session boundaries, and they rely on monolithic item aggregation to construct session representations. This approach does not capture the multi-scale and heterogeneous nature of user intent, leading to a decrease in modeling accuracy. To overcome these limitations, a novel approach called HMGS has been introduced. This system incorporates dual graph architectures to… More >

  • Open Access

    ARTICLE

    Study of electronic structure, elastic and thermodynamic properties of Cu2MgSnS4 under different pressures

    H. J. Houa,*, Su Fana, H. Y. Wanga, W. X. Chena, X. W. Lua, S. R. Zhangb, L. H. Xiec

    Chalcogenide Letters, Vol.21, No.2, pp. 189-200, 2024, DOI:10.15251/CL.2024.212.189

    Abstract The electronic structure, elastic and thermodynamic properties of Cu2MgSnS4 was studied based on density functional theory (DFT). The results show that Cu2MgSnS4 is a direct bandgap semiconductor. The B/G of Cu2MgSnS4 is greater than 1.75, indicating that Cu2MgSnS4 is a ductile material. Through the study of thermodynamic properties, it is found that the temperature increases, the bulk modulus B and Debye temperature θ decrease, while the heat capacity Cv, entropy S, Grüneisen constant γ and thermal expansion coefficient increase, and the heat capacity is close to the Dulong-Petit limit. As the pressure increases, the bulk modulus B, Debye More >

  • Open Access

    ARTICLE

    Synthesis and characterizations of Cu2MgSnS4 nanoparticles by solvothermal method

    H. Guan*, J. X. Xu, Z. Y. Yang, X. Y. Qian, M. Q. Zhao

    Chalcogenide Letters, Vol.21, No.2, pp. 169-173, 2024, DOI:10.15251/CL.2024.212.169

    Abstract Cu2MgSnS4 (CMTS) nanoparticles are successfully prepared via a solvothermal approach. X-ray diffraction (XRD) and Raman reveal that pure zinc-blende CMTS phase is obtained. Scanning electron microscopy (SEM) shows that CMTS nanoparticles exhibit microsphere structure. The band gap of as-obtained CMTS nanoparticles is calculated to be 1.68eV, indicating a potential candidate for tandem solar cells. The degradation rate of methylene blue (MB) with under visible-light irradiation is about 87%, indicating that CMTS can be useful for effective visible-light photocatalyst. More >

  • Open Access

    ARTICLE

    Hydrothermally synthesized highly stable binary manganese magnesium sulfide (MnMgS) composite with carbon nanotubes for high-performance supercapattery applications

    M. A. Sadia,*, A. Mahmoodb, W. Al-Masryb, C. W. Dunnillc, N. Mahmoodd

    Chalcogenide Letters, Vol.21, No.12, pp. 965-976, 2024, DOI:10.15251/CL.2024.2112.965

    Abstract The device which combines the outcomes supercapacitor (SC) and battery is known as supercapattery. Due to their high conductivity, sensitivity, and storage capacity, carbon nanotubes have drawn attention in energy storage (EES) applications. To achieve highperformance supercapattery, this study used an electrode based on carbon nanotubes (CNTs) and manganese magnesium sulfide (MnMgS). It showed 963 C/g specific capacity which is significantly greater than the reference sample's value of 1 A/g. The supercapattery is engineered using the CNT-doped MnMgS electrode (MnMgS/CNT//AC), which has a specific capacity (Cs) of 268 Cg-1 at 1 Ag-1 current density. A significantly higher More >

  • Open Access

    ARTICLE

    Modeling the Proposal of the Simultaneous Purchases and Sales of Electricity and Gas for the Energy Market in a Microgrid Using the Harmony Search Algorithm

    Zinan Zhou, Yirun Chen, Wensheng Dai*

    Energy Engineering, Vol.119, No.6, pp. 2681-2709, 2022, DOI:10.32604/ee.2022.021410 - 14 September 2022

    Abstract The use of different energy carriers together, known as an energy hub, has been a hot topic of research in recent years amongst scientists and researchers. The term energy hub refers to the simultaneous operation of various infrastructures for energy generation and transfer, which has gained momentum in the form of microgrids (MGs). This paper introduces a new strategy for the optimal performance of an MG consisting of different energy carriers for each day. In a smart distribution network (DN), MGs can reduce their own costs in the previous-day market by bidding on sales and… More >

  • Open Access

    ARTICLE

    An Acceptance Model of Using Mobile-Government Services (AMGS)

    Ahmad Althunibat1,*, Mohammad Abdallah1, Mohammed Amin Almaiah2, Nour Alabwaini1, Thamer Ahmad Alrawashdeh1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 865-880, 2022, DOI:10.32604/cmes.2022.019075 - 14 March 2022

    Abstract In recent years, the telecommunications sector is no longer limited to traditional communications, but has become the backbone for the use of data, content and digital applications by individuals, governments and companies to ensure the continuation of economic and social activity in light of social distancing and total closure in most countries in the world. Therefore, electronic government (e-Government) and mobile government (m-Government) are the results of technological evolution and innovation. Hence, it is important to investigate the factors that influence the intention to use m-Government services among Jordan’s society. This paper proposed a new… More >

Displaying 1-10 on page 1 of 7. Per Page