Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,369)
  • Open Access

    ARTICLE

    Coverless Information Hiding Based on the Molecular Structure Images of Material

    Yi Cao1,2, Zhili Zhou1,2,3, Xingming Sun1,2, Chongzhi Gao4,*

    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 197-207, 2018, DOI:10.3970/cmc.2018.054.197

    Abstract The traditional information hiding methods embed the secret information by modifying the carrier, which will inevitably leave traces of modification on the carrier. In this way, it is hard to resist the detection of steganalysis algorithm. To address this problem, the concept of coverless information hiding was proposed. Coverless information hiding can effectively resist steganalysis algorithm, since it uses unmodified natural stego-carriers to represent and convey confidential information. However, the state-of-the-arts method has a low hidden capacity, which makes it less appealing. Because the pixel values of different regions of the molecular structure images of material (MSIM) are usually different,… More >

  • Open Access

    ARTICLE

    Seepage-Stress-Damage Coupled Model of Coal Under Geo-Stress Influence

    Yi Xue1,2,3, Faning Dang2, Rongjian Li2, Liuming Fan2, Qin Hao4, Lin Mu2, Yuanyuan Xia2

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 43-59, 2018, DOI:10.3970/cmc.2018.054.043

    Abstract In the seepage-stress-damage coupled process, the mechanical properties and seepage characteristics of coal are distinctly different between pre-peak stage and post-peak stage. This difference is mainly caused by damage of coal. Therefore, in the process of seepage and stress analysis of coal under the influence of excavation or mining, we need to consider the weakening of mechanical properties and the development of fractures of damaged coal. Based on this understanding, this paper analyzes the influence of damage on mechanics and seepage behavior of coal. A coupled model is established to analyze the seepage-stress-damage coupled process of coal. This model implemented… More >

  • Open Access

    ARTICLE

    Three Phase Composite Cylinder Assemblage Model for Analyzing the Elastic Behavior of MWCNT-Reinforced Polymers

    Puneet Kumar1,*, J. Srinivas2

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 1-20, 2018, DOI:10.3970/cmc.2018.054.001

    Abstract Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube (CNT) reinforced polymer composites recently. This paper presents the composite cylinder assemblage (CCA) approach based on continuum mechanics for investigating the elastic properties of a polymer resin reinforced by multi-walled carbon nanotubes (MWCNTs). A three-phase cylindrical representative volume element (RVE) model is employed based on CCA technique to elucidate the effects of inter layers, chirality, interspacing, volume fraction of MWCNT, interphase properties and temperature conditions on the elastic modulus of the composite. The interface region between CNT and polymer matrix is modeled… More >

  • Open Access

    ARTICLE

    Mathematical Modelling and 3D FEM Analysis of the Influence of Initial Stresses on the ERR in a Band Crack’s Front in the Rectangular Orthotropic Thick Plate

    Arzu Turan Dincel1, Surkay D. Akbarov2,3

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 249-270, 2017, DOI:10.32604/cmc.2017.053.265

    Abstract This paper deals with the mathematical modelling and 3D FEM study of the energy release rate (ERR) in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes. The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located. After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal… More >

  • Open Access

    ARTICLE

    Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling

    Susom Dutta1, A. Ramach,ra Murthy2, Dookie Kim3, Pijush Samui4

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 157-174, 2017, DOI:10.3970/cmc.2017.053.167

    Abstract In the present scenario, computational modeling has gained much importance for the prediction of the properties of concrete. This paper depicts that how computational intelligence can be applied for the prediction of compressive strength of Self Compacting Concrete (SCC). Three models, namely, Extreme Learning Machine (ELM), Adaptive Neuro Fuzzy Inference System (ANFIS) and Multi Adaptive Regression Spline (MARS) have been employed in the present study for the prediction of compressive strength of self compacting concrete. The contents of cement (c), sand (s), coarse aggregate (a), fly ash (f), water/powder (w/p) ratio and superplasticizer (sp) dosage have been taken as inputs… More >

  • Open Access

    ARTICLE

    Influence of functionalization on the structural and mechanical properties of graphene

    L.S. Melro1,2, L.R. Jensen1

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 109-127, 2017, DOI:10.3970/cmc.2017.053.111

    Abstract Molecular dynamics simulations were applied in order to calculate the Young’s modulus of graphene functionalized with carboxyl, hydroxyl, carbonyl, hydrogen, methyl, and ethyl groups. The influence of the grafting density with percentages of 3, 5, 7, and 10% and the type of distribution as a single cluster or several small clusters were also studied. The results show that the elastic modulus is dependent on the type of functional groups. The increasing coverage density also evidenced a decrease of the Young’s modulus, and the organization of functional groups as single cluster showed a lesser impact than for several small clusters. Furthermore,… More >

  • Open Access

    ARTICLE

    A Model to Describe the Fracture of Porous Polygranular Graphite Subject to Neutron Damage and Radiolytic Oxidation

    G. Smith1, E. Schlangen2, P.E.J. Flewitt3, A.G. Crocker4, A. Hodgkins5

    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 163-185, 2016, DOI:10.3970/cmc.2016.051.163

    Abstract Two linked models have been developed to explore the relationship between the amount of porosity arising in service from both radiolytic oxidation and fast neutron damage that influences both the strength and the force-displacement (load-displacement) behaviour and crack propagation in pile grade A graphite used as a nuclear reactor moderator material. Firstly models of the microstructure of the porous graphite for both unirradiated and irradiated graphite are created. These form the input for the second stage, simulating fracture in lattice-type finite element models, which predicts force (load)-displacement and crack propagation paths. Microstructures comprising aligned filler particles, typical of needle coke,… More >

  • Open Access

    ARTICLE

    Reflection of PlaneWaves from Electro-magneto-thermoelastic Half-space with a Dual-Phase-Lag Model

    A. M. Abd-Alla1,2,3, Mohamed I. A. Othman1,4, S. M. Abo-Dahab1,5

    CMC-Computers, Materials & Continua, Vol.51, No.2, pp. 63-79, 2016, DOI:10.3970/cmc.2016.051.063

    Abstract The aim of this paper is to study the reflection of plane harmonic waves from a semi-infinite elastic solid under the effect of magnetic field in a vacuum. The expressions for the reflection coefficients, which are the relations of the amplitudes of the reflected waves to the amplitude of the incident waves, are obtained. Similarly, the reflection coefficient ratio variations with the angle of incident under different conditions are shown graphically. Comparisons are made with the results predicted by the dual-phase-lag model and Lord-Shulman theory in the presence and absence of magnetic field. More >

  • Open Access

    ARTICLE

    Molecule Dynamics Study on Heat Transfer at Gas-Nanoparticle Interface

    ZichunYang1, Gaohui Su1,2, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 43-62, 2016, DOI:10.3970/cmc.2016.051.043

    Abstract The molecular dynamics (MD) simulations were used to understand the heat transfer process between the gas phase and the solid skeleton in the nanoporous silica aerogels. The amorphous silica nanoparticles were generated by the MD simulations and the energy accommodation coefficient (EAC) between the gases and the nanoparticles was calculated based on the results of the nonequilibrium molecular dynamics (NEMD) simulations. The apparent thermal conductivity (ATC) of the gases between the heat source and heat sink was also obtained. The effects of the temperature, the particle diameter and the molecule type on the EAC and the ATC were investigated. The… More >

  • Open Access

    ARTICLE

    Exact Solutions and Mode Transition for Out-of-Plane Vibrations of Nonuniform Beams with Variable Curvature

    Sen-Yung Lee1, Shueei-Muh Lin2,3, Kai-Ping Chang1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 1-19, 2016, DOI:10.3970/cmc.2016.051.001

    Abstract The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton's principle. These equations are expressed in terms of flexural and torsional displacements simultaneously. In this study, the analytical method is proposed. Firstly, two physical parameters are introduced to simplify the analysis. One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements. Based on the relation, the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms… More >

Displaying 4261-4270 on page 427 of 4369. Per Page