Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Enhanced Feature Fusion Segmentation for Tumor Detection Using Intelligent Techniques

    R. Radha1,*, R. Gopalakrishnan2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3113-3127, 2023, DOI:10.32604/iasc.2023.030667 - 17 August 2022

    Abstract In the field of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity. Locating the defective cells precisely during the diagnosis phase helps to fight the greatest exterminator of mankind. Early detection of these defective cells requires an accurate computer-aided diagnostic system (CAD) that supports early treatment and promotes survival rates of patients. An earlier version of CAD systems relies greatly on the expertise of radiologist and it consumed more time to identify the defective… More >

  • Open Access

    ARTICLE

    Block-Wise Neural Network for Brain Tumor Identification in Magnetic Resonance Images

    Abdullah A. Asiri1, Muhammad Aamir2, Ahmad Shaf2,*, Tariq Ali2, Muhammad Zeeshan3, Muhammad Irfan4, Khalaf A. Alshamrani1, Hassan A. Alshamrani1, Fawaz F. Alqahtani1, Ali H. D. Alshehri1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5735-5753, 2022, DOI:10.32604/cmc.2022.031747 - 28 July 2022

    Abstract The precise brain tumor diagnosis is critical and shows a vital role in the medical support for treating tumor patients. Manual brain tumor segmentation for cancer analysis from many Magnetic Resonance Images (MRIs) created in medical practice is a problematic and timewasting task for experts. As a result, there is a critical necessity for more accurate computer-aided methods for early tumor detection. To remove this gap, we enhanced the computational power of a computer-aided system by proposing a fine-tuned Block-Wise Visual Geometry Group19 (BW-VGG19) architecture. In this method, a pre-trained VGG19 is fine-tuned with CNN More >

  • Open Access

    ARTICLE

    A Novel Hybrid Machine Learning Approach for Classification of Brain Tumor Images

    Abdullah A. Asiri1, Amna Iqbal2, Javed Ferzund2, Tariq Ali2,*, Muhammad Aamir2, Khalaf A. Alshamrani1, Hassan A. Alshamrani1, Fawaz F. Alqahtani1, Muhammad Irfan3, Ali H. D. Alshehri1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 641-655, 2022, DOI:10.32604/cmc.2022.029000 - 18 May 2022

    Abstract Abnormal growth of brain tissues is the real cause of brain tumor. Strategy for the diagnosis of brain tumor at initial stages is one of the key step for saving the life of a patient. The manual segmentation of brain tumor magnetic resonance images (MRIs) takes time and results vary significantly in low-level features. To address this issue, we have proposed a ResNet-50 feature extractor depended on multilevel deep convolutional neural network (CNN) for reliable images segmentation by considering the low-level features of MRI. In this model, we have extracted features through ResNet-50 architecture and… More >

  • Open Access

    ARTICLE

    Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques

    S. Sreedhar Kumar1, Syed Thouheed Ahmed2,*, Qin Xin3, S. Sandeep4, M. Madheswaran5, Syed Muzamil Basha2

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 281-299, 2022, DOI:10.32604/cmc.2022.023693 - 24 February 2022

    Abstract This paper presents, a new approach of Medical Image Pixels Clustering (MIPC), aims to trace the dissimilar patterns over the Magnetic Resonance (MR) image through the process of automatically identify the appropriate number of distinct clusters based on different improved unsupervised clustering schemes for enrichment, pattern predication and deeper investigation. The proposed MIPC consists of two stages: clustering and validation. In the clustering stage, the MIPC automatically identifies the distinct number of dissimilar clusters over the gray scale MR image based on three different improved unsupervised clustering schemes likely improved Limited Agglomerative Clustering (iLIAC), Dynamic More >

  • Open Access

    ARTICLE

    A Multi-Task Network for Cardiac Magnetic Resonance Image Segmentation and Classification

    Jing Peng1,2,4, Chaoyang Xia2, Yuanwei Xu3, Xiaojie Li2, Xi Wu2, Xiao Han1,4, Xinlai Chen5, Yucheng Chen3, Zhe Cui1,4,*

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 259-272, 2021, DOI:10.32604/iasc.2021.016749 - 26 July 2021

    Abstract Cardiomyopathy is a group of diseases that affect the heart and can cause serious health problems. Segmentation and classification are important for automating the clinical diagnosis and treatment planning for cardiomyopathy. However, this automation is difficult because of the poor quality of cardiac magnetic resonance (CMR) imaging data and varying dimensions caused by movement of the ventricle. To address these problems, a deep multi-task framework based on a convolutional neural network (CNN) is proposed to segment the left ventricle (LV) myocardium and classify cardiopathy simultaneously. The proposed model consists of a longitudinal encoder–decoder structure that… More >

  • Open Access

    ARTICLE

    Segmentation of Brain Tumor Magnetic Resonance Images Using a Teaching-Learning Optimization Algorithm

    J. Jayanthi1,*, M. Kavitha2, T. Jayasankar3, A. Sagai Francis Britto4, N. B. Prakash5, Mohamed Yacin Sikkandar6, C. Bharathiraja7

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 4191-4203, 2021, DOI:10.32604/cmc.2021.012252 - 06 May 2021

    Abstract Image recognition is considered to be the pre-eminent paradigm for the automatic detection of tumor diseases in this era. Among various cancers identified so far, glioma, a type of brain tumor, is one of the deadliest cancers, and it remains challenging to the medicinal world. The only consoling factor is that the survival rate of the patient is increased by remarkable percentage with the early diagnosis of the disease. Early diagnosis is attempted to be accomplished with the changes observed in the images of suspected parts of the brain captured in specific interval of time.… More >

  • Open Access

    ARTICLE

    Evolutionary GAN–Based Data Augmentation for Cardiac Magnetic Resonance Image

    Ying Fu1,2,*, Minxue Gong1, Guang Yang1, Hong Wei3, Jiliu Zhou1,2

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1359-1374, 2021, DOI:10.32604/cmc.2021.016536 - 22 March 2021

    Abstract Generative adversarial networks (GANs) have considerable potential to alleviate challenges linked to data scarcity. Recent research has demonstrated the good performance of this method for data augmentation because GANs synthesize semantically meaningful data from standard signal distribution. The goal of this study was to solve the overfitting problem that is caused by the training process of convolution networks with a small dataset. In this context, we propose a data augmentation method based on an evolutionary generative adversarial network for cardiac magnetic resonance images to extend the training data. In our structure of the evolutionary GAN,… More >

  • Open Access

    ARTICLE

    Residual U-Network for Breast Tumor Segmentation from Magnetic Resonance Images

    Ishu Anand1, Himani Negi1, Deepika Kumar1, Mamta Mittal2, Tai-hoon Kim3,*, Sudipta Roy4

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3107-3127, 2021, DOI:10.32604/cmc.2021.014229 - 01 March 2021

    Abstract Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world. It is apical of all new cancer incidences analyzed among females. Two features substantially influence the classification accuracy of malignancy and benignity in automated cancer diagnostics. These are the precision of tumor segmentation and appropriateness of extracted attributes required for the diagnosis. In this research, the authors have proposed a ResU-Net (Residual U-Network) model for breast tumor segmentation. The proposed methodology renders augmented, and precise identification of tumor regions and produces accurate breast tumor… More >

  • Open Access

    ABSTRACT

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 111-111, 2019, DOI:10.32604/mcb.2019.07098

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the… More >

  • Open Access

    ARTICLE

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 245-251, 2019, DOI:10.32604/mcb.2019.07441

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the… More >

Displaying 11-20 on page 2 of 21. Per Page