Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Segmentation of Brain Tumor Magnetic Resonance Images Using a Teaching-Learning Optimization Algorithm

    J. Jayanthi1,*, M. Kavitha2, T. Jayasankar3, A. Sagai Francis Britto4, N. B. Prakash5, Mohamed Yacin Sikkandar6, C. Bharathiraja7

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 4191-4203, 2021, DOI:10.32604/cmc.2021.012252

    Abstract Image recognition is considered to be the pre-eminent paradigm for the automatic detection of tumor diseases in this era. Among various cancers identified so far, glioma, a type of brain tumor, is one of the deadliest cancers, and it remains challenging to the medicinal world. The only consoling factor is that the survival rate of the patient is increased by remarkable percentage with the early diagnosis of the disease. Early diagnosis is attempted to be accomplished with the changes observed in the images of suspected parts of the brain captured in specific interval of time. From the captured image, the… More >

  • Open Access

    ARTICLE

    Evolutionary GAN–Based Data Augmentation for Cardiac Magnetic Resonance Image

    Ying Fu1,2,*, Minxue Gong1, Guang Yang1, Hong Wei3, Jiliu Zhou1,2

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1359-1374, 2021, DOI:10.32604/cmc.2021.016536

    Abstract Generative adversarial networks (GANs) have considerable potential to alleviate challenges linked to data scarcity. Recent research has demonstrated the good performance of this method for data augmentation because GANs synthesize semantically meaningful data from standard signal distribution. The goal of this study was to solve the overfitting problem that is caused by the training process of convolution networks with a small dataset. In this context, we propose a data augmentation method based on an evolutionary generative adversarial network for cardiac magnetic resonance images to extend the training data. In our structure of the evolutionary GAN, the most optimal generator is… More >

  • Open Access

    ARTICLE

    Residual U-Network for Breast Tumor Segmentation from Magnetic Resonance Images

    Ishu Anand1, Himani Negi1, Deepika Kumar1, Mamta Mittal2, Tai-hoon Kim3,*, Sudipta Roy4

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3107-3127, 2021, DOI:10.32604/cmc.2021.014229

    Abstract Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world. It is apical of all new cancer incidences analyzed among females. Two features substantially influence the classification accuracy of malignancy and benignity in automated cancer diagnostics. These are the precision of tumor segmentation and appropriateness of extracted attributes required for the diagnosis. In this research, the authors have proposed a ResU-Net (Residual U-Network) model for breast tumor segmentation. The proposed methodology renders augmented, and precise identification of tumor regions and produces accurate breast tumor segmentation in contrast-enhanced MR images.… More >

  • Open Access

    ARTICLE

    Knowledge-based reconstruction for measurement of right ventricular volumes on cardiovascular magnetic resonance images in a mixed population

    Elise D. Pieterman1,2, Ricardo P. J. Budde2, Danielle Robbers-Visser1,2, Ron T. van Domburg3, Willem A. Helbing1,2

    Congenital Heart Disease, Vol.12, No.5, pp. 561-569, 2017, DOI:10.1111/chd.12484

    Abstract Objective: Follow-up of right ventricular performance is important for patients with congenital heart disease. Cardiac magnetic resonance imaging is optimal for this purpose. However, observerdependency of manual analysis of right ventricular volumes limit its use. Knowledge-based reconstruction is a new semiautomatic analysis tool that uses a database including knowledge of right ventricular shape in various congenital heart diseases. We evaluated whether knowledge-based reconstruction is a good alternative for conventional analysis.
    Design: To assess the inter- and intra-observer variability and agreement of knowledge-based versus conventional analysis of magnetic resonance right ventricular volumes, analysis was done by two observers in a mixed… More >

  • Open Access

    ABSTRACT

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 111-111, 2019, DOI:10.32604/mcb.2019.07098

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the corpus callosum (CC) region. The… More >

  • Open Access

    ARTICLE

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 245-251, 2019, DOI:10.32604/mcb.2019.07441

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the corpus callosum (CC) region. The… More >

Displaying 11-20 on page 2 of 16. Per Page