Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    REVIEW

    Deep Learning in Medical Image Analysis: A Comprehensive Review of Algorithms, Trends, Applications, and Challenges

    Dawa Chyophel Lepcha1,*, Bhawna Goyal2,3, Ayush Dogra4, Ahmed Alkhayyat5, Prabhat Kumar Sahu6, Aaliya Ali7, Vinay Kukreja4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1487-1573, 2025, DOI:10.32604/cmes.2025.070964 - 26 November 2025

    Abstract Medical image analysis has become a cornerstone of modern healthcare, driven by the exponential growth of data from imaging modalities such as MRI, CT, PET, ultrasound, and X-ray. Traditional machine learning methods have made early contributions; however, recent advancements in deep learning (DL) have revolutionized the field, offering state-of-the-art performance in image classification, segmentation, detection, fusion, registration, and enhancement. This comprehensive review presents an in-depth analysis of deep learning methodologies applied across medical image analysis tasks, highlighting both foundational models and recent innovations. The article begins by introducing conventional techniques and their limitations, setting the… More >

  • Open Access

    ARTICLE

    Deep Architectural Classification of Dental Pathologies Using Orthopantomogram Imaging

    Arham Adnan1, Muhammad Tuaha Rizwan1, Hafiz Muhammad Attaullah1,2,*, Shakila Basheer3, Mohammad Tabrez Quasim4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5073-5091, 2025, DOI:10.32604/cmc.2025.068797 - 23 October 2025

    Abstract Artificial intelligence (AI), particularly deep learning algorithms utilizing convolutional neural networks, plays an increasingly pivotal role in enhancing medical image examination. It demonstrates the potential for improving diagnostic accuracy within dental care. Orthopantomograms (OPGs) are essential in dentistry; however, their manual interpretation is often inconsistent and tedious. To the best of our knowledge, this is the first comprehensive application of YOLOv5m for the simultaneous detection and classification of six distinct dental pathologies using panoramic OPG images. The model was trained and refined on a custom dataset that began with 232 panoramic radiographs and was later… More >

  • Open Access

    ARTICLE

    A Hybrid CNN-Transformer Framework for Normal Blood Cell Classification: Towards Automated Hematological Analysis

    Osama M. Alshehri1, Ahmad Shaf2,*, Muhammad Irfan3,*, Mohammed M. Jalal4, Malik A. Altayar4, Mohammed H. Abu-Alghayth5, Humood Al Shmrany6, Tariq Ali7, Toufique A. Soomro8, Ali G. Alkhathami9

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1165-1196, 2025, DOI:10.32604/cmes.2025.067150 - 31 July 2025

    Abstract Background: Accurate classification of normal blood cells is a critical foundation for automated hematological analysis, including the detection of pathological conditions like leukemia. While convolutional neural networks (CNNs) excel in local feature extraction, their ability to capture global contextual relationships in complex cellular morphologies is limited. This study introduces a hybrid CNN-Transformer framework to enhance normal blood cell classification, laying the groundwork for future leukemia diagnostics. Methods: The proposed architecture integrates pre-trained CNNs (ResNet50, EfficientNetB3, InceptionV3, CustomCNN) with Vision Transformer (ViT) layers to combine local and global feature modeling. Four hybrid models were evaluated on… More >

  • Open Access

    ARTICLE

    Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI

    Yao-Tien Chen1, Nisar Ahmad1,*, Khursheed Aurangzeb2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1197-1224, 2025, DOI:10.32604/cmes.2025.066580 - 31 July 2025

    Abstract Accurate and efficient brain tumor segmentation is essential for early diagnosis, treatment planning, and clinical decision-making. However, the complex structure of brain anatomy and the heterogeneous nature of tumors present significant challenges for precise anomaly detection. While U-Net-based architectures have demonstrated strong performance in medical image segmentation, there remains room for improvement in feature extraction and localization accuracy. In this study, we propose a novel hybrid model designed to enhance 3D brain tumor segmentation. The architecture incorporates a 3D ResNet encoder known for mitigating the vanishing gradient problem and a 3D U-Net decoder. Additionally, to… More > Graphic Abstract

    Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672 - 19 March 2024

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

  • Open Access

    ARTICLE

    ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules

    Lu Chen1,#, Huaqiang Chen2,#, Zhikai Pan7, Sheng Xu2, Guangsheng Lai2, Shuwen Chen2,5,6, Shuihua Wang3,8, Xiaodong Gu2,6,*, Yudong Zhang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 361-382, 2024, DOI:10.32604/cmes.2023.031229 - 30 December 2023

    Abstract Aim: This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. Methods: A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model’s generalization ability. Third, we introduce strategies for augmenting… More >

  • Open Access

    ARTICLE

    Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System

    Nojood O Aljehane*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3109-3126, 2023, DOI:10.32604/csse.2023.038042 - 09 November 2023

    Abstract Medical image analysis is an active research topic, with thousands of studies published in the past few years. Transfer learning (TL) including convolutional neural networks (CNNs) focused to enhance efficiency on an innovative task using the knowledge of the same tasks learnt in advance. It has played a major role in medical image analysis since it solves the data scarcity issue along with that it saves hardware resources and time. This study develops an Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System (ETSOTL-MIAS). The goal of the ETSOTL-MIAS technique lies in… More >

  • Open Access

    ARTICLE

    Deep Learning Framework for the Prediction of Childhood Medulloblastoma

    M. Muthalakshmi1,*, T. Merlin Inbamalar2, C. Chandravathi3, K. Saravanan4

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 735-747, 2023, DOI:10.32604/csse.2023.032449 - 20 January 2023

    Abstract This research work develops new and better prognostic markers for predicting Childhood MedulloBlastoma (CMB) using a well-defined deep learning architecture. A deep learning architecture could be designed using ideas from image processing and neural networks to predict CMB using histopathological images. First, a convolution process transforms the histopathological image into deep features that uniquely describe it using different two-dimensional filters of various sizes. A 10-layer deep learning architecture is designed to extract deep features. The introduction of pooling layers in the architecture reduces the feature dimension. The extracted and dimension-reduced deep features from the arrangement More >

  • Open Access

    ARTICLE

    Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images

    Fuat Türk*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1357-1373, 2023, DOI:10.32604/csse.2023.030772 - 03 November 2022

    Abstract Covid-19 is a deadly virus that is rapidly spread around the world towards the end of the 2020. The consequences of this virus are quite frightening, especially when accompanied by an underlying disease. The novelty of the virus, the constant emergence of different variants and its rapid spread have a negative impact on the control and treatment process. Although the new test kits provide almost certain results, chest X-rays are extremely important to detect the progression and degree of the disease. In addition to the Covid-19 virus, pneumonia and harmless opacity of the lungs also… More >

  • Open Access

    ARTICLE

    Image Color Rendering Based on Hinge-Cross-Entropy GAN in Internet of Medical Things

    Hong’an Li1, Min Zhang1,*, Dufeng Chen2, Jing Zhang1, Meng Yang3, Zhanli Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 779-794, 2023, DOI:10.32604/cmes.2022.022369 - 29 September 2022

    Abstract Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis. To overcome the limitations of the color rendering method based on deep learning, such as poor model stability, poor rendering quality, fuzzy boundaries and crossed color boundaries, we propose a novel hinge-cross-entropy generative adversarial network (HCEGAN). The self-attention mechanism was added and improved to focus on the important information of the image. And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models. In this study, we implement the HCEGAN More > Graphic Abstract

    Image Color Rendering Based on Hinge-Cross-Entropy GAN in Internet of Medical Things

Displaying 1-10 on page 1 of 18. Per Page