Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Pathfinder: Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization

    Chenxi Lyu1, Chen Dong1, Qiancheng Xiong1, Yuzhong Chen1, Qian Weng1,*, Zhenyi Chen2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3371-3391, 2025, DOI:10.32604/cmc.2025.065153 - 03 July 2025

    Abstract The rapid advancement of Industry 4.0 has revolutionized manufacturing, shifting production from centralized control to decentralized, intelligent systems. Smart factories are now expected to achieve high adaptability and resource efficiency, particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands. To address the challenges of dynamic task allocation, uncertainty, and real-time decision-making, this paper proposes Pathfinder, a deep reinforcement learning-based scheduling framework. Pathfinder models scheduling data through three key matrices: execution time (the time required for a job to complete), completion time (the actual time at which a job is finished),… More >

  • Open Access

    ARTICLE

    Continuous Monitoring of Multi-Robot Based on Target Point Uncertainty

    Guodong Yuan1,*, Jin Xie2

    Journal on Artificial Intelligence, Vol.7, pp. 1-16, 2025, DOI:10.32604/jai.2025.061437 - 14 March 2025

    Abstract This paper addresses the problem of access efficiency in multi-robot systems to the monitoring area. A distributed algorithm for multi-robot continuous monitoring, based on the uncertainty of target points, is used to minimize the uncertainty and instantaneous idle time of all target points in the task domain, while maintaining a certain access frequency to the entire task domain at regular time intervals. During monitoring, the robot uses shared information to evaluate the cumulative uncertainty and idle time of the target points, and combines the update list collected from adjacent target points with a utility function More >

  • Open Access

    ARTICLE

    Mobile Robots’ Collision Prediction Based on Virtual Cocoons

    Virginijus Baranauskas1,*, Žydrūnas Jakas1, Kastytis Kiprijonas Šarkauskas1, Stanislovas Bartkevičius2, Gintaras Dervinis1, Alma Dervinienė3, Leonas Balaševičius1, Vidas Raudonis1, Renaldas Urniežius1, Jolanta Repšytė1

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1343-1356, 2022, DOI:10.32604/iasc.2022.022288 - 09 December 2021

    Abstract The research work presents a collision prediction method of mobile robots. The authors of the work use so-called, virtual cocoons to evaluate the collision criteria of two robots. The idea, mathematical representation of the calculations and experimental simulations are presented in the paper work. A virtual model of the industrial process with moving mobile robots was created. Obstacle avoidance was not solved here. The authors of the article were working on collision avoidance problem solving between moving robots. Theoretical approach presents mathematical calculations and dependences of path angles of mobile robots. Experimental simulations, using the… More >

Displaying 1-10 on page 1 of 3. Per Page