Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    A Stochastic Multi-scale Model for Predicting the Thermal Expansion Coefficient of Early-age Concrete

    S. Liu1, X. Liu2, X. F. Guan3, P.F. He1, Y. Yuan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.2, pp. 173-191, 2013, DOI:10.3970/cmes.2013.092.173

    Abstract Early performance of mass concrete structures is very sensitive to the thermal expansion characteristics of concrete. As a kind of multi-phase composite, concrete has different material composition and microscopic configuration in different scales. Its thermal expansion coefficient (CTE) depends not only on the physical and mechanical properties of the constituents, but also on their distribution. What’s more, CTE is also time-dependent with the procedure of hydration. This research proposes a stochastic multi-scale model for analyzing CTE of concrete. In the developed model, concrete macro-scale is divided into three different levels: cement paste scale, mortar scale and concrete meso-scale; a specific… More >

  • Open Access

    ARTICLE

    A Multi-Scale Computational Method Integrating Finite Element Method with Atomic Interactions of Materials

    Bin Gu1,2,3, L. C. Zhang2, Weifeng Yuan1, Youjun Ning1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.4, pp. 309-324, 2012, DOI:10.3970/cmes.2012.088.309

    Abstract Bridging the atomic and continuous analyses is an important aspect in multi-scale mechanics. This paper develops a computational method to integrate the atomic potential of a material with the finite element method. The novelty of this method is that strain energy is calculated from the atomic potential without the assumption in the Cauchy-Born rule that deformation in a virtual atomic cell is homogeneous. In this new method, the virtual atomic cell deformation is interpolated according to the continuum displacements associated with the shape functions. The applications of the method to single crystal Si and Ge bars under uniaxial tension and… More >

  • Open Access

    ARTICLE

    Multiscale Crystal Plasticity Modeling based on Field Theory

    T. Hasebe1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 145-156, 2006, DOI:10.3970/cmes.2006.011.145

    Abstract This paper presents recent achievements in field theoretical approach toward substantial linkage among key hieratical scales dominating polycrystalline plasticity of metals and alloys. Major ingredients of the theory are briefly shown first, which is followed by several overwhelming results and some implications including key factors for dislocation cell structure evolution, key features of polycrystalline plasticity and their rational modeling in crystal plasticity-based constitutive equation. More >

  • Open Access

    ARTICLE

    An Integrated RBFN-Based Macro-Micro Multi-Scale Method for Computation of Visco-Elastic Fluid Flows

    C.-D. Tran1, D.-A. An-Vo1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.2, pp. 137-162, 2011, DOI:10.32604/cmes.2011.082.137

    Abstract This paper presents a numerical approach for macro-micro multi-scale modelling of visco-elastic fluid flows based on the Integrated Radial Basis Function Networks (IRBFNs) and the Stochastic Simulation Technique (SST). The extra stress is calculated using the Brownian configuration fields (BCFs) technique while the velocity field is locally approximated at a set of collocation points using 1D-IRBFNs. In this approach, the stress is decoupled from the velocity field and computed from the molecular configuration directly without the need for a closed form rheological constitutive equation. The equations governing the macro flow field are discretised using a meshless collocation method where the… More >

  • Open Access

    ARTICLE

    A Multi-scale Geometrical Model for Finite Element Analyses of Three-dimensional Angle-Interlock Woven Composite under Ballistic Penetration

    Kun Luan1, Baozhong Sun1, Bohong Gu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.1, pp. 31-62, 2011, DOI:10.3970/cmes.2011.079.031

    Abstract This paper reports finite element multi-scale simulations of ballistic impact damage of three-dimensional angle-interlock woven composite (3DAWC) penetrated under a hemispherical rigid projectile. A multi-scale geometrical model of the 3DAWC was established for the numerical simulation. The multi-scale geometrical model of the 3DAWC consists two parts: one is the microstructure model and another is the continuum model. The microstructure model has the same microstructure with that of the 3DAWC composite panel, including the fiber tows' diameter, fiber tow configuration and fiber volume fraction. The continuum model has the same mechanical properties with the 3DAWC. The commercial-available finite element software package… More >

  • Open Access

    ARTICLE

    Multiple Damage Detection Method for Beams Based on Multi-Scale Elements Using Hermite Cubic Spline Wavelet

    Jiawei Xiang1,2, Ming Liang1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.3, pp. 267-298, 2011, DOI:10.3970/cmes.2011.073.267

    Abstract The importance of damage detection in structures has been widely recognized in mechanical and civil engineering. A new method is proposed to detect multiple damages based on frequency measurement. According to linear fracture mechanics theory, the damages are modeled by rotational springs. The first problem of interest is concerned with the construction of multi-scaling wavelet finite element model using Hermite cubic spline wavelet on the interval (HCSWI) in the forward problem analysis to obtain damages detection database. The second problem is the inverse problem analysis to determine the number of damages, their locations and depths based on the minimum Root-mean-square… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fluid Induced Vibration of Graphenes at Micron Scales

    Y. Inoue1, R. Kobayashi1, S. Ogata1, T. Gotoh1

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.2, pp. 137-162, 2010, DOI:10.3970/cmes.2010.063.137

    Abstract Vibration of a single graphene and a pair of graphenes at micro meter scale induced by air flow is numerically simulated and examined by using a hybrid computational method starting from a microscopic level of description for the graphene. In order to bridge a huge gap in spatial and time scales in their motions, the carbon atoms of the graphene are represented by a small number of coarse grained particles, the fluid motion is described by the lattice Boltzmann equation and the momentum exchange at the boundary is treated by the time averaged immersed boundary method. It is found that… More >

  • Open Access

    ARTICLE

    Topological Derivative-Based Optimization of Micro-Structures Considering Different Multi-Scale Models

    E.A. de Souza Neto1, S. Amstutz2, S.M. Giusti3, A.A. Novotny3

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.1, pp. 23-56, 2010, DOI:10.3970/cmes.2010.062.023

    Abstract A recently proposed algorithm for micro-structural optimization, based on the concept of topological derivative and a level-set domain representation, is applied to the synthesis of elastic and heat conducting bi-material micro-structures. The macroscopic properties are estimated by means of a family of multi-scale constitutive theories where the macroscopic strain and stress tensors (temperature gradient and heat flux vector in the heat conducting case) are defined as volume averages of their microscopic counterparts over a Representative Volume Element (RVE). Several finite element-based examples of micro-structural optimization are presented. Three multi-scale models, providing an upper and a lower bound for the macroscopic… More >

  • Open Access

    ARTICLE

    On Solving the Ill-Conditioned System Ax=b: General-Purpose Conditioners Obtained From the Boundary-Collocation Solution of the Laplace Equation, Using Trefftz Expansions With Multiple Length Scales

    Chein-Shan Liu1, Weichung Yeih2, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.44, No.3, pp. 281-312, 2009, DOI:10.3970/cmes.2009.044.281

    Abstract Here we develop a general purpose pre/post conditionerT, to solve an ill-posed system of linear equations,Ax=b. The conditionerTis obtained in the course of the solution of the Laplace equation, through a boundary-collocation Trefftz method, leading to:Ty=x, whereyis the vector of coefficients in the Trefftz expansion, andxis the boundary data at the discrete points on a unit circle. We show that the quality of the conditionerTis greatly enhanced by using multiple characteristic lengths (Multiple Length Scales) in the Trefftz expansion. We further show thatTcan be multiplicatively decomposed into a dilationTDand a rotationTR. For an odd-orderedA, we develop four conditioners based on… More >

  • Open Access

    ARTICLE

    Modeling 3D Fruit Tissue Microstructure Using a Novel Ellipsoid Tessellation Algorithm

    H.K. Mebatsion1,2, P. Verboven1, P. T. Jancsók1, Q.T. Ho1, B.E. Verlinden3, B.M. Nicolaï1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.3, pp. 137-150, 2008, DOI:10.3970/cmes.2008.029.137

    Abstract Transport processes of gas and moisture are among the most important physiological processes in plant tissue. Microscale transport models based on Navier-Stokes equations provide insight into such processes at the microscopic scale. Due to microscopic complexity, numerical solutions based on the finite element or finite volume methods are mandatory. Therefore, a 3D geometric model of the tissue is essential. In this article, a novel algorithm for geometric reconstruction of 2D slices of synchrotron tomographic images is presented. The boundaries of 2D cells on individual slices were digitized to establish a set of boundary coordinates and the slice index of individual… More >

Displaying 91-100 on page 10 of 106. Per Page