Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    Unit-Cell Model of 2/2-Twill Woven Fabric Composites for Multi-Scale Analysis

    Y. W. Kwon1, K. Roach1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.1, pp. 63-72, 2004, DOI:10.3970/cmes.2004.005.063

    Abstract A micromechanical unit-cell model was developed for 2/2-twill woven fabric composites so that the model could be implemented for the multi-scale micro/macro-mechanical analysis of 2/2-twill composite structures. The unit-cell model can compute effective material properties of a 2/2-twill composite and decompose the effective stresses (strains) of the woven fabric composite into the stresses (strains) of the tows. When this unit-cell module is incorporated into the multi-scale analysis by combining with other modules developed previously, the residual strength and stiffness of a laminated structure made of 2/2-twill woven fabric composites can be predicted along with damage progression in the structure. Damage… More >

  • Open Access

    ARTICLE

    Multi-Scale Variation Prediction of PM2.5 Concentration Based on a Monte Carlo Method

    Chen Ding1, Guizhi Wang1,*, Qi Liu2

    Journal on Big Data, Vol.1, No.2, pp. 55-69, 2019, DOI:10.32604/jbd.2019.06110

    Abstract Haze concentration prediction, especially PM2.5, has always been a significant focus of air quality research, which is necessary to start a deep study. Aimed at predicting the monthly average concentration of PM2.5 in Beijing, a novel method based on Monte Carlo model is conducted. In order to fully exploit the value of PM2.5 data, we take logarithmic processing of the original PM2.5 data and propose two different scales of the daily concentration and the daily chain development speed of PM2.5 respectively. The results show that these data are both approximately normal distribution. On the basis of the results, a Monte… More >

  • Open Access

    ARTICLE

    The Effect of Matrix Tension-Compression Nonlinearity and Fixed Negative Charges on Chondrocyte Responses in Cartilage

    Morakot Likhitpanichkul1, X. Edward Guo2, Van C. Mow1,3

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 191-204, 2005, DOI:10.3970/mcb.2005.002.191

    Abstract Thorough analyses of the mechano-electrochemical interaction between articular cartilage matrix and the chondrocytes are crucial to understanding of the signal transduction mechanisms that modulate the cell metabolic activities and biosynthesis. Attempts have been made to model the chondrocytes embedded in the collagen-proteoglycan extracellular matrix to determine the distribution of local stress-strain field, fluid pressure and the time-dependent deformation of the cell. To date, these models still have not taken into account a remarkable characteristic of the cartilage extracellular matrix given rise from organization of the collagen fiber architecture, now known as the tension-compression nonlinearity (TCN) of the tissue, as well… More >

  • Open Access

    ARTICLE

    Traffic Sign Recognition Method Integrating Multi-Layer Features and Kernel Extreme Learning Machine Classifier

    Wei Sun1,3,*, Hongji Du1, Shoubai Nie2,3, Xiaozheng He4

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 147-161, 2019, DOI:10.32604/cmc.2019.03581

    Abstract Traffic sign recognition (TSR), as a critical task to automated driving and driver assistance systems, is challenging due to the color fading, motion blur, and occlusion. Traditional methods based on convolutional neural network (CNN) only use an end-layer feature as the input to TSR that requires massive data for network training. The computation-intensive network training process results in an inaccurate or delayed classification. Thereby, the current state-of-the-art methods have limited applications. This paper proposes a new TSR method integrating multi-layer feature and kernel extreme learning machine (ELM) classifier. The proposed method applies CNN to extract the multi-layer features of traffic… More >

  • Open Access

    REVIEW

    Computational Nano-mechanics and Multi-scale Simulation

    gping Shen1, S. N. Atluri1

    CMC-Computers, Materials & Continua, Vol.1, No.1, pp. 59-90, 2004, DOI:10.3970/cmc.2004.001.059

    Abstract This article provides a review of the computational nanomechanics, from the ab initio methods to classical molecular dynamics simulations, and multi- temporal and spatial scale simulations. The recent improvements and developments are briefly discussed. Their applications in nanomechanics and nanotubes are also summarized. More >

  • Open Access

    ARTICLE

    Virtual Delamination Testing through Non-Linear Multi-Scale Computational Methods: Some Recent Progress

    O. Allix1, P. Gosselet1, P. Kerfriden2, K. Saavedra3

    CMC-Computers, Materials & Continua, Vol.32, No.2, pp. 107-132, 2012, DOI:10.3970/cmc.2012.032.107

    Abstract This paper deals with the parallel simulation of delamination problems at the meso-scale by means of multi-scale methods, the aim being the Virtual Delamination Testing of Composite parts. In the non-linear context, Domain Decomposition Methods are mainly used as a solver for the tangent problem to be solved at each iteration of a Newton-Raphson algorithm. In case of strongly non linear and heterogeneous problems, this procedure may lead to severe difficulties. The paper focuses on methods to circumvent these problems, which can now be expressed using a relatively general framework, even though the different ingredients of the strategy have emerged… More >

  • Open Access

    ARTICLE

    A Highly Accurate Multi-Scale Full/Half-Order Polynomial Interpolation

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.25, No.3, pp. 239-264, 2011, DOI:10.3970/cmc.2011.025.239

    Abstract For the computational applications in several areas, we propose a single-scale and a multi-scale diagonal preconditioners to reduce the condition number of Vandermonde matrix. Then a new algorithm is given to solve the inversion of the resulting coefficient matrix after multiplying by a preconditioner to the Vandermonde matrix. We apply the new techniques to the interpolation of data by using very high-order polynomials, where the Runge phenomenon disappears even the equidistant nodes are used. In addition, we derive a new technique by employing an m-order polynomial with a multi-scale technique to interpolate 2m+1 data. Numerical results confirm the validity of… More >

  • Open Access

    ARTICLE

    Perceptual Gradient Similarity Deviation for Full Reference Image Quality Assessment

    Manyu Jin1, Tao Wang1, Zexuan Ji1,*, Xiaobo Shen2

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 501-515, 2018, DOI: 10.3970/cmc.2018.02371

    Abstract Perceptual image quality assessment (IQA) is one of the most indispensable yet challenging problems in image processing and computer vision. It is quite necessary to develop automatic and efficient approaches that can accurately predict perceptual image quality consistently with human subjective evaluation. To further improve the prediction accuracy for the distortion of color images, in this paper, we propose a novel effective and efficient IQA model, called perceptual gradient similarity deviation (PGSD). Based on the gradient magnitude similarity, we proposed a gradient direction selection method to automatically determine the pixel-wise perceptual gradient. The luminance and chrominance channels are both took… More >

  • Open Access

    ARTICLE

    The Study of the Graft Hemodynamics with Different Instant Patency in Coronary Artery Bypassing Grafting

    Zhou Zhao1, Boyan Mao2, Youjun Liu2, Haisheng Yang2, Yu Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 229-245, 2018, DOI: 10.31614/cmes.2018.04192

    Abstract In coronary artery bypass grafting (CABG), graft’s poor instant patency may lead to an abnormal hemodynamic environment in anastomosis, which could further cause graft failure after the surgery. This paper investigates the graft hemodynamics with different instant patency, and explores its effect on graft postoperative efficiency. Six CABG 0D/3D coupling multi-scale models which used left internal mammary artery (LIMA) and saphenous vein (SVG) as grafts were constructed. Different types of grafts were examined in the models, including normal grafts, grafts with competitive flow and grafts with anastomotic stenosis. Simulation results indicated that comparing with SVG grafts, there was a greater… More >

  • Open Access

    ARTICLE

    Constitutive Modeling of Early-Age Concrete by a Stochastic Multi-scale Method

    S. Liu1, X. Liu2,3, Y. Yuan2, H. A. Mang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.3, pp. 157-200, 2014, DOI:10.3970/cmes.2014.100.157

    Abstract A nonlinear viscoelastic constitutive model for early age concrete is presented in this paper. In this model, time-dependent properties, such as the elastic modulus, and thermal and autogenous shrinkage deformations, are computed by a stochastic multi-scale method, in which three different scales are specified according to the requirement of separation of scales, and different scales are linked by means of the asymptotic expansion theory with the help of specific representative volume elements (RVE). Thus, a cross-scale research from the cement paste to the macro structure of concrete is realized, and performance-based optimization of cement-based materials becomes possible. The developed constitutive… More >

Displaying 81-90 on page 9 of 106. Per Page