Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access

    ARTICLE

    2.5D Green's Functions in the Frequency Domain for Heat Conduction Problems in Unbounded, Half-space, Slab and Layered Media

    António Tadeu1, Julieta António and Nuno Simões

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.1, pp. 43-58, 2004, DOI:10.3970/cmes.2004.006.043

    Abstract This Analytical Green's functions for the steady-state response of homogeneous three-dimensional unbounded, half-space, slab and layered solid media subjected to a spatially sinusoidal harmonic heat line source are presented. In the literature, this problem is frequently referred to as the two-and-a-half dimensional fundamental solution or 2.5D Green's functions.
    The proposed equations are theoretically interesting in themselves and they are also useful as benchmark results for validating numerical applications. They are also of great practical use in the formulation of three dimensional heat transfer problems in layered solid formations using integral transform methods and/or boundary elements.
    The final expressions… More >

  • Open Access

    ARTICLE

    A Three Dimensional Numerical Investigation of the T* integral along a Curved Crack Front

    J. H. Jackson1, A. S. Kobayashi2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.1, pp. 17-30, 2004, DOI:10.3970/cmes.2004.006.017

    Abstract The Tε*  integral was calculated numerically along an extending, tunneling crack front in an 8 mm thick, aluminum three-point bend (3PB) specimen, using a numerical model driven by experimentally obtained surface displacements. The model provided input to a contour integration for the Tε*  integral, via the Equivalent Domain Integral (EDI) method with incremental plasticity. Validity of the analysis was ensured by the agreement of the Tε*  integral obtained on the surface (plane stress) and the plane stress values from previous studies. Tε*   was observed to decrease from the outer surface of the specimen to the… More >

  • Open Access

    ARTICLE

    A New Method Based on Evolutionary Algorithm for Symbolic Network Weak Unbalance

    Yirong Jiang1, Weijin Jiang2,3,4,*, Jiahui Chen2,*, Yang Wang2, Yuhui Xu2, Lina Tan2, Liang Guo5

    Journal on Internet of Things, Vol.1, No.2, pp. 41-53, 2019, DOI:10.32604/jiot.2019.07231

    Abstract The symbolic network adds the emotional information of the relationship, that is, the “+” and “-” information of the edge, which greatly enhances the modeling ability and has wide application in many fields. Weak unbalance is an important indicator to measure the network tension. This paper starts from the weak structural equilibrium theorem, and integrates the work of predecessors, and proposes the weak unbalanced algorithm EAWSB based on evolutionary algorithm. Experiments on the large symbolic networks Epinions, Slashdot and WikiElections show the effectiveness and efficiency of the proposed method. In EAWSB, this paper proposes a compression-based indirect representation method, which… More >

  • Open Access

    ARTICLE

    Effects of Deformation Rate on the Unbinding Pathway of the MMP8-Aggrecan_IGD Complex in Cartilage

    Deng Li1, Shuwei Chang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 305-318, 2019, DOI:10.32604/cmes.2019.06475

    Abstract Mechanical force plays a critical role in the remodeling and degradation of cartilage tissues. The cartilage tissue generates, absorbs, and transmits mechanical force, enabling specific biological processes in our body. A moderate intensity mechanical force is necessary for cartilage tissue remodeling and the adaptation of biomechanical properties, but a high intensity mechanical force can lead to pathological degradation of cartilage tissue. However, the molecular mechanism of cartilage degradation is still unclear. We use full atomistic simulations with SMD simulations to investigate whether the magnitude of mechanical force affects the unbinding pathway of the MMP8-Aggrecan_IGD complex. We find that when the… More >

  • Open Access

    ARTICLE

    Neural Network-Based Second Order Reliability Method (NNBSORM) for Laminated Composite Plates in Free Vibration

    Mena E. Tawfik1, 2, Peter L. Bishay3, *, Edward A. Sadek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 105-129, 2018, DOI:10.3970/cmes.2018.115.105

    Abstract Monte Carlo Simulations (MCS), commonly used for reliability analysis, require a large amount of data points to obtain acceptable accuracy, even if the Subset Simulation with Importance Sampling (SS/IS) methods are used. The Second Order Reliability Method (SORM) has proved to be an excellent rapid tool in the stochastic analysis of laminated composite structures, when compared to the slower MCS techniques. However, SORM requires differentiating the performance function with respect to each of the random variables involved in the simulation. The most suitable approach to do this is to use a symbolic solver, which renders the simulations very slow, although… More >

  • Open Access

    ARTICLE

    Inverse Analysis of Origin-Destination matrix for Microscopic Traffic Simulator

    K. Abe1, H. Fujii1, S. Yoshimura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 71-87, 2017, DOI:10.3970/cmes.2017.113.068

    Abstract Microscopic traffic simulations are useful for solving various traffic- related problems, e.g. traffic jams and accidents, local and global environmental and energy problems, maintaining mobility in aging societies, and evacuation plan- ning for natural as well as man-made disasters. The origin-destination (OD) matrix is often used as the input to represent traffic demands into traffic simulators. In this study, we propose an indirect method for estimating the OD matrix using a traffic simulator as an internal model. The proposed method is designed to output results that are consistent with the input of the simulator. The method consists of the following… More >

  • Open Access

    ARTICLE

    Non Probabilistic Solution of Fuzzy Fractional Fornberg-Whitham Equation

    S. Chakraverty1,2, Smita Tapaswini1

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.2, pp. 71-90, 2014, DOI:10.3970/cmes.2014.103.071

    Abstract Fractional Fornberg-Whitham equation has a vast application in physics. There exist various investigations for the above problem by considering the variables and parameters as crisp/exact. In practice, we may not have these parameters exactly but those may be known in some uncertain form. In the present paper, these uncertainties are taken as interval/fuzzy and the authors proposed here a new method viz. that of the double parametric form of fuzzy numbers to handle the uncertain fractional Fornberg-Whitham equation. Using the single parametric form of fuzzy numbers, original fuzzy fractional Fornberg-Whitham equation is converted first to an interval based fuzzy differential… More >

  • Open Access

    ARTICLE

    An Artificial Boundary Method for Burgers’ Equation in the Unbounded Domain

    Quan Zheng1,2, Lei Fan1, Xuezheng Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.6, pp. 445-461, 2014, DOI:10.3970/cmes.2014.100.445

    Abstract In this paper, we construct a numerical method for one-dimensional Burgers’ equation in the unbounded domain by using artificial boundary conditions. The original problem is converted by Hopf-Cole transformation to the heat equation in the unbounded domain, the latter is reduced to an equivalent problem in a bounded computational domain by using two artificial integral boundary conditions, a finite difference method with discrete artificial boundary conditions is established by using the method of reduction of order for the last problem, and thereupon the numerical solution of Burgers’ equation is obtained. This artificial boundary method is proved and verified to be… More >

  • Open Access

    ARTICLE

    A Self-regularization Technique in Boundary Element Method for 3-D Stress Analysis

    M. G. He1, C.L. Tan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.4, pp. 317-349, 2013, DOI:10.3970/cmes.2013.095.315

    Abstract The self-regularization technique in the Boundary Element Method (BEM) originally proposed by Cruse and Richardson (1996, 1999) in their work for two-dimensional (2-D) stress analysis is extended to three-dimensional (3-D) elastostatics in this paper. The regularization scheme addresses the issue of accurate numerical evaluation of the integrals due to the singularity of the kernel functions of the integral equations. It is first implemented for the determination of displacements and stresses at interior points of the solution domain, and very accurate results are obtained even when these points are very close to the surface of the domain. A self-regularized traction-BIE is… More >

  • Open Access

    ARTICLE

    The Coupling Method of Natural Boundary Element and Mixed Finite Element for Stationary Navier-Stokes Equation in Unbounded Domains

    Dongjie Liu1, Dehao Yu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.37, No.3, pp. 305-330, 2008, DOI:10.3970/cmes.2008.037.305

    Abstract The coupling method of natural boundary element and mixed finite element is applied to analyze the stationary Navier-Stokes equation in 2-D unbounded domains. After an artificial smooth boundary is introduced, the original nonlinear problem is reduced into an equivalent problem defined in bounded computational domain. The well-posedness of the reduced problem is proved. The finite element approximation of this problem is given, and numerical example is provided to show the feasibility and efficiency of the method. More >

Displaying 91-100 on page 10 of 111. Per Page