Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access

    ARTICLE

    The Artificial Boundary Method for a Nonlinear Interface Problem on Unbounded Domain

    De-hao Yu1 ,Hong-ying Huang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.3, pp. 227-252, 2008, DOI:10.3970/cmes.2008.035.227

    Abstract In this paper, we apply the artificial boundary method to solve a three-dimensional nonlinear interface problem on an unbounded domain. A spherical or ellipsoidal surface as the artificial boundary is introduced. The exact artificial boundary conditions are derived explicitly in terms of an infinite series and then the well-posedness of the coupled weak formulation in a bounded domain, which is equivalent to the original problem in the unbounded domain, is obtained. The error estimate depends on the mesh size, the term after truncating the infinite series and the location of the artificial boundary. Some numerical examples are presented to demonstrate… More >

  • Open Access

    ARTICLE

    A Domain Decomposition Method Based on Natural BEM and Mixed FEM for Stationary Stokes Equations on Unbounded Domains

    Ju’e Yang1, Hongying Huang2, Dehao Yu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.4, pp. 347-366, 2012, DOI:10.3970/cmes.2012.085.347

    Abstract In this paper, a new domain decomposition method is suggested for the stationary Stokes equations on unbounded domain and its convergence is proved. We draw an artificial boundary to make the domain into two parts: one is bounded, in which we use the mixed finite element method; the other is unbounded, in which we apply the natural boundary reduction. Then we change the sub-problem on the unbounded domain onto a one in a bounded domain and we use the Dirichlet to Neumann(DtN) alternating algorithm to solve the resulting mixed system. The theoretical results as well as the numerical examples show… More >

  • Open Access

    ARTICLE

    A Further Study on Using x· = λ[αR + βP] (P = F − R(F·R) / ||R||2) and x· = λ[αF + βP] (P = R − F(F·R) / ||F||2) in Iteratively Solving the Nonlinear System of Algebraic Equations F(x) = 0

    Chein-Shan Liu1,2, Hong-Hua Dai1, Satya N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.2, pp. 195-228, 2011, DOI:10.3970/cmes.2011.081.195

    Abstract In this continuation of a series of our earlier papers, we define a hyper-surface h(x,t) = 0 in terms of the unknown vector x, and a monotonically increasing function Q(t) of a time-like variable t, to solve a system of nonlinear algebraic equations F(x) = 0. If R is a vector related to ∂h / ∂x, , we consider the evolution equation x· = λ[αR + βP], where P = F − R(F·R) / ||R||2 such that P·R = 0; or x· = λ[αF + βP], where P = R − F(F·R) / ||F||2 such that P*·F =… More >

  • Open Access

    ARTICLE

    Simple "Residual-Norm" Based Algorithms, for the Solution of a Large System of Non-Linear Algebraic Equations, which Converge Faster than the Newton’s Method

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 279-304, 2011, DOI:10.3970/cmes.2011.071.279

    Abstract For solving a system of nonlinear algebraic equations (NAEs) of the type: F(x)=0, or Fi(xj) = 0, i,j = 1,...,n, a Newton-like algorithm has several drawbacks such as local convergence, being sensitive to the initial guess of solution, and the time-penalty involved in finding the inversion of the Jacobian matrix ∂Fi/∂xj. Based-on an invariant manifold defined in the space of (x,t) in terms of the residual-norm of the vector F(x), we can derive a gradient-flow system of nonlinear ordinary differential equations (ODEs) governing the evolution of x with a fictitious time-like variable t as an independent variable. We can prove… More >

  • Open Access

    ARTICLE

    Geometric Formulation of Maxwell's Equations in the Frequency Domain for 3D Wave Propagation Problems in Unbounded Regions

    P. Bettini1, M. Midrio2, R. Specogna2

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.2, pp. 117-134, 2010, DOI:10.3970/cmes.2010.066.117

    Abstract In this paper we propose a geometric formulation to solve 3D electromagnetic wave problems in unbounded regions in the frequency domain. An absorbing boundary condition (ABC) is introduced to limit the size of the computational domain by means of anisotropic Perfectly Matched Layers (PML) absorbing media in the outer layers of an unstructured mesh. The numerical results of 3D benchmark problems are presented and the effect of the PML parameters and scaling functions on PML effectiveness are discussed. More >

  • Open Access

    ARTICLE

    An Efficient Trefftz-Based Method for Three-Dimensional Helmholtz Problems in Unbounded Domains

    Bart Bergen1, Bert Van Genechten1, Dirk Vandepitte1, Wim Desmet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.2, pp. 155-176, 2010, DOI:10.3970/cmes.2010.061.155

    Abstract The Wave Based Method (WBM) is a numerical prediction technique for Helmholtz problems. It is an indirect Trefftz method using wave functions, which satisfy the Helmholtz equation, for the description of the dynamic variables. In this way, it avoids both the large systems and the pollution errors that jeopardize accurate element-based predictions in the mid-frequency range. The enhanced computational efficiency of the WBM as compared to the element-based methods has been proven for the analysis of both three-dimensional bounded and two-dimensional unbounded problems. This paper presents an extension of the WBM to the application of three-dimensional acoustic scattering and radiation… More >

  • Open Access

    ARTICLE

    On the application of the Fast Multipole Method to Helmholtz-like problems with complex wavenumber

    A. Frangi1, M. Bonnet2

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.3, pp. 271-296, 2010, DOI:10.3970/cmes.2010.058.271

    Abstract This paper presents an empirical study of the accuracy of multipole expansions of Helmholtz-like kernels with complex wavenumbers of the form k = (α + iβ)ϑ, with α = 0,±1 and β > 0, which, the paucity of available studies notwithstanding, arise for a wealth of different physical problems. It is suggested that a simple point-wise error indicator can provide an a-priori indication on the number N of terms to be employed in the Gegenbauer addition formula in order to achieve a prescribed accuracy when integrating single layer potentials over surfaces. For β ≥ 1 it is observed that the… More >

  • Open Access

    ARTICLE

    DFT Studies on Ferroelectric Ceramics and Their Alloys: BaTiO3, PbTiO3, SrTiO3, AgNbO3, AgTaO3, PbxBa1-xTiO3 and SrxBa1-xTiO3

    Mustafa Uludoğan1, D. Paula Guarin1, Zully E. Gomez1, Tahir Cagin1, William A. Goddard III2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 215-238, 2008, DOI:10.3970/cmes.2008.024.215

    Abstract Aiming at a presentation of the utility of the state of art of first-principles methods (PBE flavor of Density Functional Theory, DFT) in the area of materials science and engineering, we present our studies of the equation of state and ferroelectric-paraelectricphase transition in several ferroelectric systems, including BaTiO3, PbTiO3, SrTiO3, AgNbO3, PbxBa1-xTiO3 and SrxBa1-xTiO3. We also report the Born effective charges, optical dielectric constant, and phonon dispersion relation properties from Density Functional Perturbation Theory. Computed results are compared with other theoretical results (which were mostly on BaTiO3, PbTiO3, cubic SrTiO3 using various approaches, as well as experiments. The studies on… More >

  • Open Access

    ARTICLE

    Numerical Solution of Nonlinear Exterior Wave Problems Using Local Absorbing Boundary Conditions

    Igor Patlashenko1, Dan Givoli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 61-70, 2000, DOI:10.3970/cmes.2000.001.221

    Abstract The method of Absorbing Boundary Conditions (ABCs) is considered for the numerical solution of a class of nonlinear exterior wave scattering problems. Recently, a scheme based on the exact nonlocal Dirichlet-to-Neumann (DtN) ABC has been proposed for such problems. Although this method is very accurate, it is also highly expensive computationally. In this paper, the nonlocal ABC is replaced by a low-order local ABC, which is obtained by localizing the DtN condition in a certain "optimal'' way. The performance of the new local scheme is compared to that of the nonlocal scheme via numerical experiments in two dimensions. More >

  • Open Access

    ARTICLE

    Failure Prediction, Lead Time Estimation and Health Degree Assessment for Hard Disk Drives Using Voting Based Decision Trees

    Kamaljit Kaur1, *, Kuljit Kaur2

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 913-946, 2019, DOI:10.32604/cmc.2019.07675

    Abstract Hard Disk drives (HDDs) are an essential component of cloud computing and big data, responsible for storing humongous volumes of collected data. However, HDD failures pose a huge challenge to big data servers and cloud service providers. Every year, about 10% disk drives used in servers crash at least twice, lead to data loss, recovery cost and lower reliability. Recently, the researchers have used SMART parameters to develop various prediction techniques, however, these methods need to be improved for reliability and real-world usage due to the following factors: they lack the ability to consider the gradual change/deterioration of HDDs; they… More >

Displaying 101-110 on page 11 of 111. Per Page