Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (930)
  • Open Access

    ARTICLE

    An Intelligent Multi-Stage GA–SVM Hybrid Optimization Framework for Feature Engineering and Intrusion Detection in Internet of Things Networks

    Isam Bahaa Aldallal1, Abdullahi Abdu Ibrahim1,*, Saadaldeen Rashid Ahmed2,3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075212 - 10 February 2026

    Abstract The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false More >

  • Open Access

    ARTICLE

    Robust and Efficient Federated Learning for Machinery Fault Diagnosis in Internet of Things

    Zhen Wu1,2, Hao Liu3, Linlin Zhang4, Zehui Zhang5,*, Jie Wu1, Haibin He1, Bin Zhou6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075156 - 10 February 2026

    Abstract Recently, Internet of Things (IoT) has been increasingly integrated into the automotive sector, enabling the development of diverse applications such as the Internet of Vehicles (IoV) and intelligent connected vehicles. Leveraging IoV technologies, operational data from core vehicle components can be collected and analyzed to construct fault diagnosis models, thereby enhancing vehicle safety. However, automakers often struggle to acquire sufficient fault data to support effective model training. To address this challenge, a robust and efficient federated learning method (REFL) is constructed for machinery fault diagnosis in collaborative IoV, which can organize multiple companies to collaboratively More >

  • Open Access

    ARTICLE

    A Comparative Benchmark of Machine and Deep Learning for Cyberattack Detection in IoT Networks

    Enzo Hoummady*, Fehmi Jaafar

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074897 - 10 February 2026

    Abstract With the proliferation of Internet of Things (IoT) devices, securing these interconnected systems against cyberattacks has become a critical challenge. Traditional security paradigms often fail to cope with the scale and diversity of IoT network traffic. This paper presents a comparative benchmark of classic machine learning (ML) and state-of-the-art deep learning (DL) algorithms for IoT intrusion detection. Our methodology employs a two-phased approach: a preliminary pilot study using a custom-generated dataset to establish baselines, followed by a comprehensive evaluation on the large-scale CICIoTDataset2023. We benchmarked algorithms including Random Forest, XGBoost, CNN, and Stacked LSTM. The… More >

  • Open Access

    ARTICLE

    Scalable and Resilient AI Framework for Malware Detection in Software-Defined Internet of Things

    Maha Abdelhaq1, Ahmad Sami Al-Shamayleh2, Adnan Akhunzada3,*, Nikola Ivković4, Toobah Hasan5

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073577 - 10 February 2026

    Abstract The rapid expansion of the Internet of Things (IoT) and Edge Artificial Intelligence (AI) has redefined automation and connectivity across modern networks. However, the heterogeneity and limited resources of IoT devices expose them to increasingly sophisticated and persistent malware attacks. These adaptive and stealthy threats can evade conventional detection, establish remote control, propagate across devices, exfiltrate sensitive data, and compromise network integrity. This study presents a Software-Defined Internet of Things (SD-IoT) control-plane-based, AI-driven framework that integrates Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) networks for efficient detection of evolving multi-vector, malware-driven botnet attacks.… More >

  • Open Access

    ARTICLE

    Optimizing RPL Routing Using Tabu Search to Improve Link Stability and Energy Consumption in IoT Networks

    Mehran Tarif1, Mohammadhossein Homaei2,*, Abbas Mirzaei3, Babak Nouri-Moghaddam3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071676 - 10 February 2026

    Abstract The Routing Protocol for Low-power and Lossy Networks (RPL) is widely used in Internet of Things (IoT) systems, where devices usually have very limited resources. However, RPL still faces several problems, such as high energy usage, unstable links, and inefficient routing decisions, which reduce the overall network performance and lifetime. In this work, we introduce TABURPL, an improved routing method that applies Tabu Search (TS) to optimize the parent selection process. The method uses a combined cost function that considers Residual Energy, Transmission Energy, Distance to the Sink, Hop Count, Expected Transmission Count (ETX), and More >

  • Open Access

    ARTICLE

    Context-Aware Spam Detection Using BERT Embeddings with Multi-Window CNNs

    Sajid Ali1, Qazi Mazhar Ul Haq1,2,*, Ala Saleh Alluhaidan3,*, Muhammad Shahid Anwar4, Sadique Ahmad5, Leila Jamel3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.074395 - 29 January 2026

    Abstract Spam emails remain one of the most persistent threats to digital communication, necessitating effective detection solutions that safeguard both individuals and organisations. We propose a spam email classification framework that uses Bidirectional Encoder Representations from Transformers (BERT) for contextual feature extraction and a multiple-window Convolutional Neural Network (CNN) for classification. To identify semantic nuances in email content, BERT embeddings are used, and CNN filters extract discriminative n-gram patterns at various levels of detail, enabling accurate spam identification. The proposed model outperformed Word2Vec-based baselines on a sample of 5728 labelled emails, achieving an accuracy of 98.69%, More >

  • Open Access

    ARTICLE

    Cognitive NFIDC-FRBFNN Control Architecture for Robust Path Tracking of Mobile Service Robots in Hospital Settings

    Huda Talib Najm1,2, Ahmed Sabah Al-Araji3, Nur Syazreen Ahmad1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071837 - 29 January 2026

    Abstract Mobile service robots (MSRs) in hospital environments require precise and robust trajectory tracking to ensure reliable operation under dynamic conditions, including model uncertainties and external disturbances. This study presents a cognitive control strategy that integrates a Numerical Feedforward Inverse Dynamic Controller (NFIDC) with a Feedback Radial Basis Function Neural Network (FRBFNN). The robot’s mechanical structure was designed in SolidWorks 2022 SP2.0 and validated under operational loads using finite element analysis in ANSYS 2022 R1. The NFIDC-FRBFNN framework merges proactive inverse dynamic compensation with adaptive neural learning to achieve smooth torque responses and accurate motion control.… More >

  • Open Access

    ARTICLE

    Performance Evaluation of the Hybrid Heat Pump to Decarbonize the Buildings Sector: Energetic, Environmental and Economic Characterization

    Miriam Di Matteo*, Domiziana Vespasiano, Gianluigi Lo Basso, Costanza Vittoria Fiorini, Andrea Vallati

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.064353 - 27 January 2026

    Abstract Decarbonising the building sector, particularly residential heating, represents a critical challenge for achieving carbon-neutral energy systems. Efficient solutions must integrate both technological performance and renewable energy sources while considering operational constraints of existing systems. This study investigates a hybrid heating system combining a natural gas boiler (NGB) with an air-to-water heat pump (AWHP), evaluated through a combination of laboratory experiments and dynamic modelling. A prototype developed in the Electrical and Energy Engineering Laboratory enabled the characterization of both heat generators, the collection of experimental data, and the calibration of a MATLAB/Simulink model, including emissions and… More >

  • Open Access

    ARTICLE

    Multi-Objective Enhanced Cheetah Optimizer for Joint Optimization of Computation Offloading and Task Scheduling in Fog Computing

    Ahmad Zia1, Nazia Azim2, Bekarystankyzy Akbayan3, Khalid J. Alzahrani4, Ateeq Ur Rehman5,*, Faheem Ullah Khan6, Nouf Al-Kahtani7, Hend Khalid Alkahtani8,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073818 - 12 January 2026

    Abstract The cloud-fog computing paradigm has emerged as a novel hybrid computing model that integrates computational resources at both fog nodes and cloud servers to address the challenges posed by dynamic and heterogeneous computing networks. Finding an optimal computational resource for task offloading and then executing efficiently is a critical issue to achieve a trade-off between energy consumption and transmission delay. In this network, the task processed at fog nodes reduces transmission delay. Still, it increases energy consumption, while routing tasks to the cloud server saves energy at the cost of higher communication delay. Moreover, the… More >

  • Open Access

    ARTICLE

    Energy Aware Task Scheduling of IoT Application Using a Hybrid Metaheuristic Algorithm in Cloud Computing

    Ahmed Awad Mohamed1, Eslam Abdelhakim Seyam2,*, Ahmed R. Elsaeed3, Laith Abualigah4, Aseel Smerat5,6, Ahmed M. AbdelMouty7, Hosam E. Refaat8

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073171 - 12 January 2026

    Abstract In recent years, fog computing has become an important environment for dealing with the Internet of Things. Fog computing was developed to handle large-scale big data by scheduling tasks via cloud computing. Task scheduling is crucial for efficiently handling IoT user requests, thereby improving system performance, cost, and energy consumption across nodes in cloud computing. With the large amount of data and user requests, achieving the optimal solution to the task scheduling problem is challenging, particularly in terms of cost and energy efficiency. In this paper, we develop novel strategies to save energy consumption across… More >

Displaying 1-10 on page 1 of 930. Per Page