Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (172)
  • Open Access

    ARTICLE

    MHD BOUNDARY LAYER FLOW AND HEAT TRANSFER OF A NANOFLUID PAST A RADIATIVE AND IMPULSIVE VERTICAL PLATE

    G. Dharmaiaha,†, N. Vedavathib , CH. Baby Ranic , K.S. Balamurugand

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.14

    Abstract The time-dependent flow past an impulsively started vertical infinite plate in a viscous electrically conducting natural convective incompressible Nano-fluid is considered in this article by taking into account the effects of heat absorption, heat generation and radiation. An analytical study is performed to obtain exact solutions for water-based Nano-fluid TiO2. The dimensionless governing equations for this investigation are solved analytically by using the small perturbation Technique. The effects of various physical parameters on velocity, temperature fields are presented graphically. With the aid of these, the expression for the skin-friction and Nusselt number profiles was done with More >

  • Open Access

    ARTICLE

    HEAT TRANSFER AND CU-WATER NANOFLUID FLOW IN A VENTILATED CAVITY HAVING CENTRAL COOLING CYLINDER AND HEATED FROM THE BELOW CONSIDERING THREE DIFFERENT OUTLET PORT LOCATIONS

    Zoubair Boulahia* , Abderrahim Wakif, Rachid Sehaqui

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-10, 2018, DOI:10.5098/hmt.11.11

    Abstract A numerical study has been performed to investigate mixed convection flow in a vented square cavity with circular cooling obstacle. The governing equations such as two dimensional Navier-Stokes, continuity, and energy balance equations have been solved using a finite volume discretization method with SIMPLE algorithm. The effect of the Richardson number, outlet port location and volume fraction of nanoparticles were studied. The outlet port is varied from top to bottom in order to find the maximum heat transfer rate. The results indicated that by increasing the volume fraction of nanoparticles and reducing Richardson number, the More >

  • Open Access

    ARTICLE

    Mass Transfer of MHD Nanofluid in Presence of Chemical Reaction on A Permeable Rotating Disk with Convective Boundaries, Using Buongiorno's Model

    Muhammad Shoaib Arif 1, *, Yasir Nawaz1, Mairaj Bibi2, Zafar Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 31-49, 2018, DOI:10.31614/cmes.2018.00434

    Abstract This communiqué is opted to study the flow of nanofluid because of heated disk rotation subjected to the convective boundaries with chemical reaction of first order. Wherein Buongiorno’s model for nanofluids is used due to its wide range of applications and the rotating disk under investigation is permeable. Small magneto Reynolds parameter and boundary layer assumptions are carried out to formulate the problem. The system of nonlinear partial differential equations governing the flow problem is converted into the set of ordinary differential equations by using particular relations known as Von Karman transformations. The complicated set More >

  • Open Access

    ARTICLE

    UNSTEADY MHD THREE-DIMENSIONAL CASSON NANOFLUID FLOW OVER A POROUS LINEAR STRETCHING SHEET WITH SLIP CONDITION

    I.S. Oyelakina,† , S. Mondala,* , P. Sibandaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.37

    Abstract In this paper we study the effects of thermal radiation, heat and mass transfer on the unsteady magnetohydrodynamic(MHD) flow of a three dimensional Casson nanofluid. The flow is subject to partial slip and convective conditions. The traditional model which includes the effects of Brownian motion and thermophoresis is revised so that the nanofluid particle volume fraction on the boundary is not actively controlled. In this respect the problem is more realistic. The dimensionless governing equations were solved using the spectral quasi-linearisation method. This work aims to fill the gap in existing literature by showing the More >

  • Open Access

    ARTICLE

    EFFECT OF MAGNETIC FIELD INCLINATION ON MAGNETOCONVECTIVE INDUCED IRREVERSIBILITIES IN A CNT-WATER NANOFLUID FILLED CUBIC CAVITY

    Abdullah A.A.A. Al-Rasheda , Lioua Kolsib,d,*, K. Kalidasanc , Chemseddine Maatkid, Mohamed Naceur Borjinid , Mohamed Aichounib, P. Rajesh Kannae

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.31

    Abstract A finite volume based three dimensional numerical analysis is performed on the effect of angle of inclination of the external magnetic force on entropy generation due to natural convection inside the cubical cavity filled with CNT - water nanofluid. The governing equations are numerically solved by vorticity - vector potential formalism. The vertical walls of enclosure are differentially heated and the horizontal walls are adiabatic. The effect due to Rayleigh number (103 ≤ Ra ≤ 105), Hartmann number (0 ≤ Ha ≤ 100), angle of inclination of external magnetic field (0° ≤ α ≤ 90°) and More >

  • Open Access

    ARTICLE

    MATHEMATICAL STUDY OF NON-NEWTONIAN NANOFLUID TRANSPORT PHENOMENA FROM AN ISOTHERMAL SPHERE

    CH. Amanullaa,b , N. Nagendraa,1 , M. Surya Narayana Reddyb , A. Subba Raoa , O. Anwar Bégc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-13, 2017, DOI:10.5098/hmt.8.29

    Abstract In this article, the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid from an isothermal sphere surface is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference More >

  • Open Access

    ARTICLE

    MODELING OF FREE CONVECTION HEAT TRANSFER UTILIZING NANOFLUID INSIDE A WAVY ENCLOSURE WITH A PAIR OF HOT AND COLD CYLINDERS

    Zoubair Boulahia* , Abderrahim Wakif, Rachid Sehaqui

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.14

    Abstract In the present work, natural convection heat transfer of Cu-water nanofluid inside a wavy wall enclosure is investigated numerically by using the finite volume discretization method. The study examines the effect of the nanoparticle volume fraction, the Rayleigh number, the wave amplitude, and the undulations number on the heat transfer rate. The results show that the heat transfer rate inside the wavy enclosure enhances by decreasing the wavy surface amplitude and increasing undulations number. It is also found that by increasing the volume fraction of nanoparticles and Rayleigh number, the heat transfer rate increases. More >

  • Open Access

    ARTICLE

    FREE CONVECTIVE HEAT TRANSFER OF MHD DISSIPATIVE CARREAU NANOFLUID FLOW OVER A STRETCHING SHEET

    M. Sathish Kumar, N. Sandeep* , B. Rushi Kumar

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.13

    Abstract Nowadays external magnetic fields are capable of setting the thermal and physical properties of magnetic-nanofluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of magnetic nanofluids and makes it aeolotropic. With this incentive, we investigate the flow and heat transfer of electrically conducting liquid film flow of Carreau nanofluid over a stretching sheet by considering the aligned magnetic field in the presence of space and temperature dependent heat source/sink and viscous dissipation. For this study, we considered kerosene as the base fluid embedded with More >

  • Open Access

    ARTICLE

    G-JITTER EFFECTS ON THE MIXED CONVECTION FLOW OF NANOFLUID PAST AN INCLINED STRETCHING SHEET

    Noraihan Afiqah Rawia , Abdul Rahman Mohd Kasimb , Zaiton Mat Isaa , Aurangzaib Mangic , Sharidan Shafiea,*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.12

    Abstract Mixed convection flows of nanofluid past an inclined stretching sheet with g-jitter effect is studied in this paper. Water based nanofluid containing copper, copper oxide, aluminium oxide and silver nanoparticles are concerned. Coupled nonlinear partial differential equations are solved using Kellerbox method. The effect of solid nanoparticles volume fraction parameter, frequency of oscillation and inclination angle parameter is observed to reduce the skin friction and heat transfer coefficients whereas mixed convection parameter increases both skin friction and heat transfer coefficients. Present study also shows that, the heat transfer coefficient is highest for silver nanofluid. More >

  • Open Access

    ARTICLE

    MIXED CONVECTION FLOW OF NANOFLUID IN A VERTICAL CHANNEL WITH HALL AND ION-SLIP EFFECTS

    D. Srinivasacharya* , Md. Shafeeurrahaman

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.11

    Abstract In this article the laminar mixed convective incompressible electrically conducting flow of a nanofluid in vertical channel has been investigated by considering Hall and Ion-slip parameter effects. The nonlinear governing equations are non-dimensionalized and then solving by using HAM procedure. The impact of the magnetic, Hall and Ion-slip parameter on dimensionless velocity, temperature and nanoparticle concentration are investigated and represented geo-metrically. More >

Displaying 131-140 on page 14 of 172. Per Page