Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (157)
  • Open Access


    Analysis of the Influence of Viscosity and Thermal Conductivity on Heat Transfer By Al2O3-Water Nanofluid

    Houda Jalali1, ∗, Hassan Abbassi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 253-270, 2019, DOI:10.32604/fdmp.2019.03896

    Abstract The addition of nanoparticles into liquid, even at low concentrations, leads to an increase in both, dynamic viscosity and thermal conductivity. Furthermore, the increase in temperature causes an increase in thermal conductivity and a decrease in the nanofluid viscosity. In this context, a numerical investigation of the competition between viscosity and thermal conductivity about their effects on heat transfer by Al2O3-water nanofluid was conducted. A numerical study of heat transfer in a square cavity, filled with Al2O3-water nanofluid and heated from the left side, was presented in this paper. Continuity, momentum, and thermal energy equations are… More >

  • Open Access


    A Controlled Conditions of Dynamic Cold Storage Using Nano fluid as PCM

    Bin Liu1, Zhaodan Yang1, Yahui Wang1, Rachid Bennacer1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.1, pp. 37-47, 2017, DOI:10.3970/fdmp.2017.013.037

    Abstract The dynamic thermal history of storage product system is related to the insulation and also to the inertia. Use a new porous media doped with nanofluid PCM to improve the system efficiency. The analysis of the porous sponge thickness with 8 mm, 16 mm and 20 mm, the integrated nanofluids with 0.1%, 0.15% and 0.2%, the mass of the PCM and the initial temperature of the stored product with -1°C, 4°C, 12°C is achieved in order to underline the advantages of the new saturated porous media (sponges) with the phase change material (PCM) /Al2O3-H2O nanofluid. The… More >

  • Open Access


    Analysis on the Thermal Performance of Nanofluids As Working Fluid With Porous Heat Sinks: Applications in Electronics Cooling

    Ziad Saghir, Cayley Delisle, Christopher Welsford*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 19-19, 2019, DOI:10.32604/icces.2019.05145

    Abstract The enhancement of consumer and industrial electronics has led to an increase in both the power and compactness of the products available. However, with these increases follows a subsequent increase in the thermal losses experienced across, for example, a central processing unit (CPU). As well, the need to dissipate waste thermal energy is compounded by the increased compactness. As the chipsets become smaller, the threads contained therein also reduce in size and as such become more sensitive to temperature gradients which can cause deformation. Although this deformation is miniscule, its continuous repetition can ultimately result… More >

  • Open Access


    Mass Transfer of MHD Nanofluid in Presence of Chemical Reaction on A Permeable Rotating Disk with Convective Boundaries, Using Buongiorno's Model

    Muhammad Shoaib Arif 1, *, Yasir Nawaz1, Mairaj Bibi2, Zafar Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 31-49, 2018, DOI:10.31614/cmes.2018.00434

    Abstract This communiqué is opted to study the flow of nanofluid because of heated disk rotation subjected to the convective boundaries with chemical reaction of first order. Wherein Buongiorno’s model for nanofluids is used due to its wide range of applications and the rotating disk under investigation is permeable. Small magneto Reynolds parameter and boundary layer assumptions are carried out to formulate the problem. The system of nonlinear partial differential equations governing the flow problem is converted into the set of ordinary differential equations by using particular relations known as Von Karman transformations. The complicated set More >

  • Open Access


    Investigation of Squeezing Unsteady Nanofluid Flow Using the Modified Decomposition Method

    Lei Lu1,2, Li-Hua Liu3,4, Xiao-Xiao Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.1, pp. 1-15, 2014, DOI:10.3970/cmes.2014.101.001

    Abstract In this paper, we use the modified decomposition method (MDM) to solve the unsteady flow of a nanofluid squeezing between two parallel equations. Copper as nanoparticle with water as its base fluid has considered. The effective thermal conductivity and viscosity of nanofluid are calculated by the Maxwell- Garnetts (MG) and Brinkman models, respectively. The effects of the squeeze number, the nanofluid volume fraction, Eckert number, δ on Nusselt number and the Prandtl number are investigated. The figures and tables clearly show high accuracy of the method to solve the unsteady flow. More >

  • Open Access


    MLPG Application of Nanofluid Flow Mixed Convection Heat Transfer in a Wavy Wall Cavity

    A. Arefmanesh1, M. Najafi2, M. Nikfar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.2, pp. 91-118, 2010, DOI:10.3970/cmes.2010.069.091

    Abstract Procuring a numerical solution through an application of the meshless local Petrov-Galerkin method (MLPG) on the fluid flow and mixed convection in a complex geometry cavity filled with a nanofluid is the scope of the present study. The cavity considered is a square enclosure having a lower temperature sliding lid at the top, a differentially higher temperature wavy wall at the bottom, and two thermally insulated walls on the sides. The nanofluid medium used is a water-based nanofluid, Al2O3-water with various volume fractions of its solid. To carry out the numerical simulations, the developed governing equations… More >

  • Open Access


    Mixed Convection in a Lid-Driven Square Cavity With Heat Sources Using Nanofluids

    Ilhem Zeghbid1, Rachid Bessaïh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 251-273, 2017, DOI:10.3970/fdmp.2017.013.251

    Abstract This paper presents a numerical study of two-dimensional laminar mixed convection in a lid-driven square cavity filled with a nanofluid and heated simultaneously at a constant heat flux q” by two heat sources placed on the two vertical walls. The movable wall and the bottom wall of the cavity are maintained at a local cold temperature TC, respectively. The finite volume method was used to solve the equations of flow with heat transfer across the physical domain. Comparisons with previous results were performed and found to be in excellent agreement. Results were presented in terms of… More >

  • Open Access


    Mixed Convection of Nanofluids inside a Lid-Driven Cavity Heated by a Central Square Heat Source

    Fatima-zohra Bensouici1, *, Saadoun Boudebous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 189-212, 2017, DOI:10.3970/fdmp.2017.013.189

    Abstract A numerical work has been performed to analyze the laminar mixed convection of nanofluids confined in a lid driven square enclosure with a central square and isotherm heat source. All the walls are cooled at constant temperature, and the top wall slides rightward at constant velocity. The simulations considered four types of nanofluids (Cu, Ag, Al2O3 and TiO2)-Water. The governing equations were solved using finite volume approach by the SIMPLER algorithm. Comparisons with previously published work are performed and found to be in good agreement. The influence of pertinent parameters such as Richardson number, size of… More >

  • Open Access


    Mixed Convection of a Nanofluid in a Vertical Anisotropic Porous Channel with Heated/Cooled Walls

    S. Slama1, H. Kahalerras1, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 155-172, 2017, DOI:10.3970/fdmp.2017.013.155

    Abstract A numerical study is conducted to investigate the problem of mixed convection of a nanofluid in a vertical porous channel with one wall heated and the other cooled. The Darcy-Brinkman-Forchheimer model is used to describe the flow in the porous medium, considered as anisotropic in thermal conductivity, and the two-phase approach is adopted to simulate the motion of the nanofluid. The governing equations with the associated boundary conditions are solved by the finite volume method. The parametric study is focused on the variation of the Richardson number Ri, the heat fluxes ratio Rq, the Darcy number… More >

  • Open Access


    Lattice Boltzmann Method for Simulation of Nanoparticle Brownian Motion and Magnetic Field Effects on Free Convection in A Nanofluid-filled Open Cavity with Heat Generation/Absorption and Non Uniform Heating on the Left Solid Vertical Wall

    Mohamed Ammar Abbassi1, Bouchmel Mliki1, Ridha Djebali1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 59-83, 2017, DOI:10.3970/fdmp.2017.013.059

    Abstract This article reports a numerical study of nanoparticle Brownian motion and magnetic field effects by natural convection in a nanofluid-filled open cavity with non uniform boundary condition. Lattice Boltzmann Method (LBM) is used to simulate nanofluid flow and heat transfer. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo-Kleinstreuer-Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity and effective viscosity is considered and examined. Simulations have been carried out for the pertinent parameters in the following ranges: Rayleigh number (Ra=103−106), Hartmann number (Ha=0-60), nanoparticle volume concentration (Φ=0–0.04) and More >

Displaying 141-150 on page 15 of 157. Per Page